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Abstract 

Accurate steady and unsteady numerical solutions of the full 2-D governing equations – that model the 

forced film condensation flow of saturated vapor over a semi-infinite horizontal plate (the problem of Cess [1] and 

Koh [2]) - are obtained over a range of flow parameters.   The results presented here are used to better understand 

the limitations of the well-known similarity solutions given by Koh [2].  It is found that steady/quasi-steady film 

wise solution exists only if the inlet speed is above a certain threshold value. Above this threshold speed, 

steady/quasi-steady film condensation solutions exist and their film thickness variations are approximately the same 

as the similarity solution given by Koh [2]. However these steady solutions differ from the Koh solution [2] 

regarding pressure variations and associated effects in the leading part of the plate. Besides results based on the 

solutions of the full steady governing equations, this paper also presents unsteady solutions that characterize the 

steady solutions’ attainability, stability (response to initial disturbances), and their response to ever-present  

minuscule noise on the condensing surface. For this shear driven flow, the paper finds that if the uniform vapor 

speed is above a threshold value, an unsteady solution that begins with any reasonable initial guess, is attracted in 

time, to a steady solution. This long time limiting solution is the same – within computational errors – as the 

solution of the steady problem. The reported unsteady solutions that yield the steady solution in the long time limit 

also yield “attraction rates” for non-linear stability analysis of the steady solutions. The attraction rates are found to 

diminish gradually with increasing distance from the leading edge and with decreasing inlet vapor speed. These 

steady solutions are generally found to be stable to initial disturbances on the interface as well as in any flow 

variable in the interior of the flow domain. 

The results for low vapor speeds below the threshold value indicate that the unsteady solutions exhibit non-

existence of any steady limit of film wise flow in the aft portion of the solution. Even when a steady solution exists, 

the flow attainability is also shown to be difficult (because of waviness and other sensitivities) at large downstream 

distances.  

 

* Cess, R. D., 1960, “Laminar Film Condensation on a Flat Plate in the Absence of a Body Force,” Zeitschrift für 

Angewandte Mathematik und Physik, 11, pp. 426-433 /Koh, J. C. Y., 1962, “Film Condensation in a Forced-

Convection Boundary-Layer Flow,” International Journal of Heat and Mass Transfer, Vol. 5, pp. 941-954. 

 

Key-words: film condensation, phase-change heat transfer, two-phase flows, stability, instability, interfacial waves. 
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Nomenclature 

Cp Specific heat, J/(kg-K) 

Dmax Displacement amplitude of waves on the condensing surface, m  

f Non-dimensional frequency fp of bottom wall vibraions given by 1/Tb ≡ fp·Ye/U∞ 

fp Physical value of frequency of bottom wall vibraions, Hz 

Fr Froude number U∞
2/gYe 

Ja Jakob number given by Cp1∆T /hfg 

hfg   Latent heat, J/kg 

k Thermal conductivity, W/(m·K) 

m�  Non-dimensional value of interfacial mass flux, m� ≡ m� /(ρ1· U∞) 

m�  Physical value of interfacial mass flux, kg/(m2·s) 

ni Representative number of grid points in x direction for simulations 

nj Representative number of grid points in y direction for simulations 

p Pressure, N/m2 

p∞ Pressure far field, N/m2 

PrI Prandtl number µΙCpI/kI 

Reδ Film Reynolds number, 4ρ1 u1avg (x) ∆(x) / µ1 

Tw Non-dimnesional time period of condensing surface vibraions  

T Temperature, K 

U∞* Lower threshold of vapor speed U∞ given by simulations for film wise 

condensation, m/s 

U∞ Far upstream vapor speed, m/s  

(u,v ) Values of x and y components of velocity, m/s 
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(u,v) Non-dimensional values of u and v, (u,v) ≡ (u/ U∞, v/ U∞)  

vmax Physical value of the amplitude of a standing velocity wave associated with 

condensing surface noise, m/s 

We Weber number, ρ1U∞
2Ye/σ    

xe Non-dimensional value of domain length, Xe/Ye 

x* Distance from the leading edge beyond which pressure gradient in liquid or vapor 

domain is nearly equal to zero, m 

x* Non-dimensional value of x*, x*/Ye 

Xe Physical value of domain length (distance from leading edge BC in Fig.1), m 

xe Non-dimensional value of domain length, Xe/Ye 

(x, y, t) Non-dimensional values of (x, y, t) ≡ (x/Ye, y/Ye, (t· U∞/Ye)) in the computational 

and problem formulation context. 

Ye Characteristics length (OA in Fig.1), m 

∆T Temperature difference between the vapor and the condensing-surface, º C 

φ Rate of energy dissipation inside a flow domain, W 

 

Greek Symbols 

πΙ Non-dimensional pressure, pI/(ρI· U∞
2)  

θ Non-dimensional temperature, T/∆T 

ρ Density, kg/m3 

µ Viscosity, Pa-s 

∆ Physical value of condensate film thickness, m 

δ Non-dimensional value of condensate thickness, ∆/Ye 

ν Kinematic viscosity µ/ρ, m2/s 
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Subscripts 

Ι It takes a value of 1 for liquid phase and 2 for vapor phase 

s Saturation condition 

w Condensing surface 

  

Superscripts 

i Value of a variable at an interface location 

 

 

1. Introduction 

1.1 The Cess [1] and Koh [2] Problem and Related Similarity Solutions 
 
 

The problem studied by Cess [1] and Koh [2] deals with forced flow of saturated vapor 

(with a uniform upstream speed U∞) that approaches a semi-infinite horizontal plate and starts 

experiencing film-wise condensation over the plate (see Fig. 1). The central interest of this paper 

is to solve the steady and unsteady governing equations for the full two dimensional version of 

this problem, compare the steady solutions with the relevant classical similarity solutions offered 

by Cess [1] and Koh [2], and to improve our understanding of the feasibility of the film wise 

condensation assumption underlying the Cess [1] and Koh [2] solutions. The results of Koh [2] 

have been pivotal to the studies that rely on (e.g. Rose [3]) or use (e.g. Balasubramaniam et. al 

σ Surface tension, N/m 

λ Non-dimensional wave-length for the bottom wall vibrations (λ =λp/Ye) 

λp Physical/dimensional value of wavelength for the bottom wall vibraions, m  

λo Non-dimensional wave-length for the initial disturbance δ′(x, 0) on the interface 

δ' Non-dimensional value of disturbance on the interface 
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[4]) this solution to predict or estimate the features of shear driven external condensing flows. 

The ordinary differential equations associated with the solution of Koh [2], which are 

numerically solved, result from a boundary layer and constant pressure approximation of an 

assumed film-wise condensation behavior and a “similarity” solution formulation of the resulting 

model equations. This solution’s approach is very similar to other similarity solutions (Sparrow 

and Gregg [5], Koh et. al [6]) for gravity-driven condensing flows that are well-cited in the 

literature. One reason why this similarity solution for the shear driven condensate case ([2]) has 

not been experimentally verified is, perhaps, significant differences exist between shear driven 

and gravity driven flows with regard to ease of attainment of film wise or annular condensation 

and another reason is the difficulty in implementing a suitable experiment that meets the 

requirements of the theory ([1], [2]). This is in contrast with the similarity solutions (e.g. 

Sparrow and Gregg [5] and Koh et al. [6]) for film wise condensation over a plate under 

conditions of gravity-driven condensate motion. The gravity driven cases’ similarity solutions 

are in good agreement with the Nusselt solution [7] and, also, known to be experimentally 

feasible and in reasonable agreement with related experiments [8].  With regard to ease of 

achieving film wise or annular condensation, similar differences are known to exist between 

gravity driven and shear driven internal condensing flows. The experiments involving gravity 

driven internal condensing flows inside a vertical tube (see [9], [10], etc.) or large hydraulic 

diameter slightly inclined (downward) channels demonstrate easy attainment of a rather robust 

quasi-steady wavy annular (or film condensation) flows but annular or film wise shear driven 

internal condensing flows in mm to µm-scale horizontal tubes and channels are more difficult to 

achieve and show ([11]-[14]) more complex vapor-liquid morphologies (such as steady or 

intermittent injection annular, mist, slug/plug, bubbly, etc.). 
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1.2 Steady and Unsteady Results Presented in this Paper 

The computationally obtained steady solutions of the problem studied by Cess [1] and 

Koh [2] and their comparison with the well-known analytical results of Koh [2] have been 

discussed in this paper. It is shown here that, for a certain range of vapor speeds and vapor-to-

wall temperature differences, Koh’s analytical solution [2] of this external condensing flow 

problem agrees well with the reported computational solution’s steady film thickness predictions.  

However the reported simulations differ from the Koh solution [2] in pressure and associated 

variables’ variation near the leading edge of the plate. While the analytical solution of Koh [2] 

assumes that the pressure stays constant even in the interior of the flow, the steady solutions 

presented in this paper show that there are significant pressure variations near the leading edge 

part of the plate and though the resulting pressure differences are miniscule in value relative to 

the far field pressure p∞, they are very important for determining the dynamics of the flow and in 

determining the feasibility of maintaining film wise condensation at low vapor speeds. It is found 

that the leading edge pressure gradients become large as the vapor speed U∞ becomes 

sufficiently small. 

The unsteady solutions reported in this paper help assess attainability of the steady 

solutions. This is done here by looking at limiting solutions (as t → ∞) of the unsteady problem 

obtained for different initial guesses. Additionally, important assessments of stability through 

unsteady response (to initial disturbances as well as to ever present bottom wall noises) of these 

flows are obtained and discussed. The effort to obtain and analyze unsteady solutions results in 

introduction and quantification of the following features of the steady solutions: (i) “attraction 

rate” values that measure the attainability of the steady solutions from different initial guesses, 
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(ii) response of the steady solutions to initial disturbances, and (iii) noise-sensitivity of the steady 

solutions to ever-present minuscule noise and, as a result, expected waviness levels on the steady 

solutions. 

For the range of vapor speeds (0.2 m/s -20 m/s) considered for investigation of film wise 

condensation of typical non-metallic vapors (R113, FC-72, etc.), when an arbitrary initial guess 

(at t = 0) is used to obtain an unsteady solution in the idealized case of no condensing surface 

vibrations (no matter how minuscule), it is shown that the unsteady solutions tend to a smooth 

wave free long term steady solution. The limiting steady solution, when obtained this way as 

opposed to obtaining it as a steady solution of the steady governing equations, is termed a steady 

“attractor.” This unsteady attraction process is studied and “attraction rates” to the limiting 

steady solution are defined. Though the reported “attraction rates” associated with attainability of 

a steady solution may appear to be a new idea, it is related to the well known idea of “decay 

rates” in linearized stability analyses that assume exponential time evolution of initial 

disturbances. Thus increased monotonic (i.e. non-oscillatory) “attraction rates” reported here 

correlate with the idea of stronger “decay rates” (i.e. larger, real, and negative coefficients 

multiplying time in the exponential decay assumption in linear stability analyses). That is large 

“attraction rates” mean both attainability and stronger stability of the steady solution. The 

“attraction rates” are used here because, in the present non-linear context, they are both more 

general and computationally easier to obtain than “decay rates” in the linear context. It is found 

that this “attraction rate” when plotted as a function of time for any given point on the steady 

solution (which is close to Koh solution [2] – at least as far as steady film thickness values are 

concerned) may, in general, depend on the steady solution of the system (that is the underlying 

partial differential equations under no-noise conditions) as well as the starting initial conditions. 
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However we show here that a proper segment of the time-history associated with the rate of 

change of film thickness yields a definition of “attraction  rate” which is more or less 

independent of the choice of initial guess. This properly chosen measure of “attraction rate” is 

shown to diminish with increasing distance from the leading edge and also with decreasing speed 

U∞. As a result, it is found that the assumed film wise steady condensation is difficult to achieve 

at very low free stream speeds and, for free stream speeds that are sufficiently large, attainment 

difficulty is predicted for large downstream distances. 

 For example, unsteady results find that at low vapor speeds (U∞ < U∞
* ≈ 0.2 m/s for the 

case discussed here), a long term steady limit is not reached and hence a film wise steady 

solution or a steady “attractor” does not exist. This result is further supported by the fact that the 

steady “attractor” (for U∞ > 0.2 m/s in the example considered here) exhibits an approach to near 

zero mechanical energy availability for viscous dissipation in the interior of any chosen control 

volume. 

For sufficiently fast vapor speeds, since the “attraction rate” diminishes with downstream 

distance, one expects sensitivity to the effects of: transverse gravity (see [9] for similar effects 

for condensation inside a horizontal channel), to unintended variations in the far field uniform 

pressure p∞, and to ever present minuscule noise on the condensing surface. Considering 

limitations imposed by our computational approach and the scope of the paper, this paper limits 

itself to demonstrating increasing downstream waviness associated with persistent but minuscule 

condensing surface noise. It is shown that when an arbitrary initial guess (at t = 0) is used to 

obtain an unsteady solution (for t > 0) in the presence of minuscule noise on the condensing 

surface (defined later in the paper through a representative Fourier component), the underlying 

long term solution’s diminishing attraction rates with distance cause the noise induced interfacial 
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waves to grow with the distance from the leading edge. A measure of spatial growth as well as 

its growth rate with distance is reported in this paper.  

1.3 Trustworthiness of the Employed Computational Tool  

The computational tool employed to solve the Koh problem [2] in this paper has been 

successfully used to solve internal as well as external condensing flow problems reported in [15]-

[20].  The steady and unsteady simulation results and stability results for the classical Nusselt 

problem [7] by the tools employed in this paper have been already reported elsewhere in Phan 

and Narain [16]. The agreement of steady computational results in [16] with the Nusselt solution 

[7] as well as successful comparison of computational results in [15] - [20] for internal 

condensing flows with relevant semi-analytical ([9], [15]) and experimental results ([9], [15]) 

further strengthen the confidence in the results reported here. 

 

2. Governing Equations and Formulation for the Computational Problem 

The liquid and vapor phases in the flow (e.g., see Fig. 1) are denoted by a subscript I: I = 

1 for liquid and I = 2 for vapor. As shown in Fig.1, the far upstream speed of the forced vapor 

flow is a uniform U∞. The fluid properties (density ρ, viscosity µ, specific heat Cp, and thermal 

conductivity k) with subscript “I” are assumed to take their representative constant values for 

each phase (I = 1 or 2). Let TI be the temperature field (K), pI be the pressure field (N/m2), Ts (p) 

be the saturation temperature of the vapor (K) as a function of local pressure p, ∆ be the film 

thickness (m), m� be the local interfacial mass flux (kg/(s·m2)), Tw (x) be a known temperature 

variation (here, often, Tw (x) = constant = Tw (0) < Ts (p)) of the cooled bottom plate (K), and 

yeev ˆˆ
IxII vu += be the velocity field (m/s). It is assumed here that ∆T ≡  Ts (p∞) - Tw(0) is always 
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sufficiently large to allow film condensation at all x, including the x ~ 0 zone. For common 

metallic condensing surfaces and non-metallic (refrigerant) vapors, if ∆T is larger than 1-2oC and 

other surface-energy conditions are supportive, annular/stratified or film condensation can be 

assumed/realized and conditions for its attainment can be theoretically/experimentally assessed. 

As shown in Fig. 1, instead of the original infinite domain (x ≥ 0 and y ≥ 0), solutions for 

this problem are to be computationally obtained over a finite domain (0 ≤ x ≤ Xe and 0 ≤ y ≤ Ye). 

For convenience, the characteristic length for this problem is chosen to be Ye, where Ye can be 

chosen to be a known numerical multiple of the well known physical value of steady film 

thickness for an altogether different problem – the one associated with a vertical inclination of 

the plate (gravity driven condensate) and for U∞ = 0 - viz. the Nusselt problem (see [7], [16]). 

That is, Ye ≡ c1·∆Ν(Xe), where c1 = 47 for most of the cases considered here and ∆Ν(Xe) is the 

Nusselt film thickness at x = Xe. An equivalent alternative is Ye ≡ (c2·µ1)/(ρ1·hfg)
0.5, where c2 = 

1.133x105 for most of the cases considered here. These choices make Ye an a priori known 

number that is sufficiently large to capture all the relevant vapor flow domain of interest here. 

Though other choices of intrinsic characteristic length Ye are also possible (e.g. 

e 1 1Y /( .U )∞= µ ρ or
3/ 4 1/ 4 1/ 2 3 / 4 1

e 1 1 p1 1Y k C− − −= µ ∆ ρT ), the earlier two choices suffice here. 

Furthermore, as discussed in section 5, either of the two choices of Ye is a posteriori verified to 

be effective by showing that the numerically obtained values of the flows’ physical variables are 

independent of different choices of the number for Ye. The above choice of Ye for characteristic 

length and U∞ for characteristic speed are used for defining the non-dimensional variables whose 

computationally obtained values are reported in this paper. As needed, these values can easily be 

related to the results obtained from other commonly used choices of characteristic length and 

speed. Let gy be gravitational acceleration acting along y axis (gravity along x direction is zero 
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for this horizontal flow), p∞ be the pressure of the far field vapor at y ≥ Ye, ∆T ≡  Ts (p∞) - Tw(0) 

be the representative controlling temperature difference between the vapor and the bottom plate, 

and hfg be the heat of vaporization at saturation temperature Ts (p). With t representing the 

physical time, a new list of fundamental non-dimensional variables is introduced through the 

following definitions:    

                                          

        (1) 

In what follows, all governing equations are presented in their more general unsteady forms. 

Interior Equations 

The non-dimensional differential forms of mass, momentum (x and y components) and 

energy equations for flow in the interior of either of the phases are well-known and are given in 

(A.1) - (A.4) of the Appendix. The simplified forms that are used in obtaining the Koh 

formulation ([2]) and its solution are given by (A.1) and (A.6) of the Appendix. 

Interface Conditions 

The nearly exact physical variables form of general interface conditions (Delhaye [22]) 

for condensing flows, with some approximations, are used here and, in the form used here, they 

are given in Appendix Eqs. (A.1) - (A.9) of Narain et al. [18]. Utilizing a superscript, “i” for 

values of the flow variables at the interface given by ,0),( =∆−≡ txyH the non-dimensional 

forms of the interface conditions are given below in Eqs. (2) – (8). The Koh formulation [2] uses 

simplified versions of Eqs. (2) - (7) given below and they are, respectively, given as Eqs. (A.7)-

(A.11) of the Appendix.  
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• The non-dimensional form of the requirement of continuity of tangential component of 

velocities (Eq. (A. 2) of [18]) becomes: 

                                                                 ,)v(vδuu i

1

i

2x

i

1

i

2 −−=                                                      (2) 

where, x.δ/δ x ∂∂≡  

• The non-dimensional form of the normal component of momentum balance at the interface 

(Eq. (A. 3) of [18]) becomes: 

                                                     ,1
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+
−= �                  (3) 

where We-1 ≡ σ/ρ1U∞
2Ye, and σ is the surface tension with σ = σ (T ) being a function of 

interfacial temperature T. Though surface tension term is included here, over the range of 

computational investigations reported here, the presence or absence of the second and third terms 

on the right side of Eq. (3) were found to have none to negligible impact on simulation results 

reported here. Because of near constancy of interfacial saturation temperature (as interfacial 

pressure variations are not strong enough to change it), and resulting absence of Marangoni 

effects (see Eq. (4) below), the surface tension variation effect also shows no qualitative impact 

on the unsteady solutions reported here. 

• The tangential component of momentum balance at the interface (Eq. (A. 4) of [18]) becomes: 

                                                      [ ] ,t
y

u

µ

µ

y

u i2

1

2i1 +
∂

∂
=

∂
∂                                                        (4) 

The resulting term [t] used here is defined by Eq. (A.5) of the Appendix. 
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• The non-dimensional forms 
LK

m� and 
VK

m� of the non-zero physical values of interfacial mass 

fluxes 
LK
�m and 

VK
�m  (defined in Eq. (A.5) of [18]) impose kinematic constraints on the 

interfacial values of the liquid and vapor velocity fields and are given by:      

                                    
[ ]

[ ] .
2i

2

i

212VK

2i

1

i

1LK

x)δ/(1/t)δ/(vx)δ/(u)/ρ(ρm

and  ,x)δ/(1/t)δ/(vx)δ/(um

∂∂+∂∂−−∂∂≡

∂∂+∂∂−−∂∂≡

�

�

                                  (5) 

• The non-dimensional form mEnergy� of the non-zero physical values of interfacial mass flux 

� Energym  (as given by Eq. (A.6) of [18]) represents the constraint imposed on mass flux by the 

balance equation for the net energy transfer across the interface, and is given by: 

                                             }n/θ)/kk(n/θ){Pr(Re/Jam
i

212

i

111Energy ∂∂−∂∂≡� ,                                (6) 

where fg
0

p1 /∆CJa hΤ≡  and ≅≡ ∞))((0 pThh
sfgfg ))(( i

2sf pTh g . 

• The interfacial mass balance requires that the net mass flux (in kg/m2/s) at a point on the 

interface, as given by Eq. (A.7) of [18], be single-valued regardless of which physical process is 

used to obtain it. The non-dimensional form of this requirement becomes: 

                                                   .mmmm EnergyVKLK
���� ≡==                                          (7) 

It should be noted that negligible interfacial thermal resistance and equilibrium thermodynamics 

on either side of the interface are assumed to hold at all values of x downstream of the origin 

(i.e., second or third computational cell onwards). Hence, as in Koh solution [2] and as per 

discussions in the Appendix of [18] (see Eq. (A.8) of [18]), no non-equilibrium thermodynamic 

model for the interfacial mass-flux m�  is needed to obtain a solution.  
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• The non-dimensional thermodynamic restriction on interfacial temperatures (as given by Eq. 

(A.8) in [18]) becomes:                                                               

( ) ( ). πθ∆θθ
i

2s
i

2s

i

2

i

1 ≡=≅ ΤpΤ                                                 (8) 

Within the vapor domain, for any of the typical refrigerants (such as R113 considered here), 

typical changes in absolute pressure relative to the inlet pressure are small but sufficient to affect 

vapor motion, though, at the same time, they are too small to affect saturation temperature values 

even for the largest adverse pressure gradient zone in the leading edge. This allows the 

approximation )0(θ)(πθ s

i

2s ≅ to be a valid one. 

Boundary Conditions 

 Since the vapor flow is nearly uniform at locations at large y, appropriate boundary 

conditions are prescribed along lines OA (x = 0), AB (y = Ye or y = 1) and BC (x = Xe or x = xe = 

Xe/Ye) in Fig. 1. Assuming onset of condensation at x = 0 (i.e. ∆ (0, t) = 0), the boundary 

conditions are:  

Inlet: At the inlet x = 0, we have: 

                                        u2(0, y, t) = U∞ , 0xv
0x2

=∂∂
=

 on OA in Fig. 1                                (9) 

Pressure is not prescribed across the inlet boundary but is prescribed to be the far field pressure 

p∞ at the top corner reference location (point A with x = 0 and y = OA in Fig. 1) on the inlet 

boundary. Pressures within the entire domain, including the inlet values p2 (0, y, t), are calculated 

as part of the solution of the problem being considered. However, outside and above the control 

volume, one expects the far field pressures to be: p2 - p∞ ≡ (ρ2.U∞
2)· π2 (0, y, t) = 0 for y ≥ OA 
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(see Fig. 1) or  y ≥ 1. For temperature, one also iteratively imposes the condition T2 (0, y, t) = Tsat 

(p2 (0, y, t)) - which is, in principle, a non-constant prescription of vapor temperature at the inlet.  

It should be noted that prescription of pressure at reference location (point A in Fig. 1) 

does not make inlet boundary condition one of pressure-inlet. It remains a boundary where x-

component of vapor velocity u2 is uniform but y-component of vapor velocity v2 is given the 

requisite freedom through the condition 0xv
0x2

=∂∂
=

. 

Top: On the top boundary, where y  = OA (see Fig. 1) or  y = 1, the pressure is p∞ and shear 

stress is nearly zero. This leads to standard far field boundary modeling condition: 

                                       π2(x,1,t) = 0 and ∂u2/∂y|(x,1,t) = 0 on AB in Fig. 1              (10) 

The temperature at the top boundary is also considered to be one of saturated vapor, i. e.  T2(x, 

Ye, t) = Tsat(p∞). Therefore, according to Eq. (1), θ2(x,1,t) = Tsat(p∞) /∆T. If the temperature at the 

top boundary is allowed some superheat (5-10 oC), a non-zero thickness for temperature 

boundary layer develops near the interface. For saturated vapor flow conditions considered here, 

this thermal boundary layer thickness is not present. Even if the boundary layer has non-zero 

thickness because of presence of vapor superheat, a non-zero superheat has no impact on the 

reported results for most vapors (we have computationally verified this and the physical reasons 

are discussed later). 

Exit: 

As far as exit condition is concerned, none is needed for temperature. For the Koh 

problem [2], and the steady solution, the exit pressure remains externally unspecified and, as a 

result, it remains close to the far field pressure p∞ if the exit is sufficiently far from the inlet. This 

is not only the original assumption of Koh formulation [2] but is also the assumption for most 
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parabolic external flow problems (such as single phase flow over a flat plate, etc.). For this  

modeling, either of the two formulations [A] or [B] below is used. 

[A] The pressure is prescribed to be the uniform steady pressure p∞ (i.e. non dimensional 

pressure π2 of zero) along some of the vapor phase at the exit section (along BD' in Fig. 1) that is 

close to the top boundary. Thus the best way to faithfully reproduce the above assumption for 

pressure at the exit, is 

π2  (xe, y, t) ≈ 0 and 
e

2
(x ,y,t)

v
| 0

x

∂
≅

∂
                                                 (11) 

whenever xe and y are sufficiently large (i.e., y is on D΄B  in Fig. 1) . For smaller y values (i.e., y 

on CD΄ in Fig. 1 where the point D΄ at x = Xe can be taken to be any point that is sufficiently 

close to the interface), no boundary condition is prescribed except for the “outflow” boundary 

condition. The “outflow” condition is simply that the mass flow across CD΄ – which specifically 

includes the liquid portion 0 ≤ y ≤ ∆(Xe, t) – is such that it satisfies the overall mass balance for a 

control volume formed by the bounding surfaces x = 0, x = Xe, y = 0, and y = Ye.  

[B] The pressure is left unspecified along the entire (or most) vapor phase at the exit 

section (along BC in Fig. 1). Because uniform pressure p∞ is already prescribed along the top 

(AB in Fig. 1), only an “outflow” condition at the exit section is enforced to preserve an overall 

mass balance for the entire control volume (see OABC in Fig. 1).  This formulation is adequate 

as the resulting computational solution obtained under this formulation also satisfies the requisite 

π2(xe, y, t) ≈ 0 condition. This steady or unsteady solution obtained under [B] is found to be 

nearly identical (within computational convergence bounds) to the solution under [A] above. So, 

from here and henceforth, unless otherwise stated, this exit formulation [B] is used to closely 

follow the original intent of the Koh formulation [2] – that is to assume that the uniform far field 
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pressure (= p∞) condition holds for the exit section if it is sufficiently far from the inlet and, as a 

result, at these locations no significant adjustments in cross-sectional kinetic energy takes place. 

Condensing Surface: 

At the condensing surface (y = 0), we have: 

                                      u1(x,0,t) = v1(x,0,t) = 0 and θ1(x,0,t) = θw ≡ Tw/∆T.                                   (12) 

 

Preliminary Remarks about the Steady Formulation and Solution: 

For the steady problem, all variables are considered time independent and all time 

derivatives are dropped. The temperature variations in the vapor field were computed but the 

variations were found to be, as is well known, quite insignificant for zero (or small) superheat. 

Therefore, for all practical purposes, vapor can be assumed to be at uniform saturation 

temperature – i.e. θ2(x,y,t) ≅ θs(0) at all locations in the vapor domain. This is reasonable because 

effects of superheat ∆Tsup (in the typical 5 - 10°C range) are verifiably negligible because of the 

typically small values of vapor Jakob number (Ja2 ≡ Cp2·∆Tsup / hfg) and thermal conductivity 

ratio k2/k1 (see Eq. (6)) that are encountered for most non-metallic vapor flow conditions of 

interest here.  

Preliminary Remarks about the Unsteady Formulation: 

The governing equations and the interface conditions given above are valid under the 

continuum assumption and, therefore, they cannot model and incorporate various inter-molecular 

forces that are important in determining the time evolution of very thin (10 - 100 nm) condensate 

film thickness δ(x,t). As a result, for solving unsteady problems, t = 0 cannot be chosen to be the 
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time when saturated vapor first comes in contact with and condenses on the dry sub-cooled (Tw 

(x) < Ts (p∞)) horizontal condensing-surface. With the above modeling limitations, the strategy 

for obtaining unsteady solutions is to start at a time (t = 0) for which one either has a sufficiently 

thick steady solution of the continuum equations (where all the governing equations clearly 

apply) or one has any reasonable, but sufficiently thick, initial guess. Then, from there, one can 

obtain the unique large time (t → ∞) smooth or wavy (steady/quasi-steady) condensate flow 

solution/behavior – if one exists - with the help of the unsteady continuum equations. The 

reported computational results verify the fact that the large times (or long term) unsteady 

solutions are independent of the choice of initial condition and thus represent (also see [9] steady 

or unsteady features of the limiting steady solution for this flow.  

Initial Conditions for the Unsteady Formulation: 

In the context of the above discussion, if φ (x,y,t) is any variable (such as uI, vI, πI, θI, 

etc.), the initial values of φ and film thickness δ(x,t) are given as: 

            
steady(x,y,0)   (x,y) φ = φ or

initial-guess (x,y)φ  and  
steadyδ (x,0) δ (x)=  or 

initial-guessδ (x) ,                 (13)          

where initial-guessφ and/or 
 initial-guessδ are reasonable initial guesses and steadyφ  and/or 

steadyδ  are the 

solutions of the governing equations obtained by dropping all time dependencies in Eqs. (2) - 

(12) above.  

An inspection of all the non-dimensional governing equations, interface conditions, and 

boundary conditions reveals the fact that the computational solutions given here are affected by 

the following set of seven independent non-dimensional parameters:  
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where Fr-1
y = U∞

2/gyYe and Re1 ≡ ρ1U∞Ye/µ1. As we see later, for the downstream distances 

considered in this paper, the role of Fr-1
y is insignificant. The role of surface tension, through We, 

is also found to be insignificant for cases considered here. 

 

3. Koh’s Formulation for a Similarity Solution of the Steady Problem 

The formulation for this problem (see Cess [1] or Koh [2]) is posed by governing 

equations (A.1) and (A.6) of the Appendix along with the interface and boundary conditions 

given in (A.7)-(A.12) of the Appendix. The “similarity” formulation is sought after rewriting 

(A.1) and (A.6) following an introduction of certain assumed forms of velocity and temperature 

functions in terms of two new similarity variables (η for the liquid phase and ξ for the vapor 

phase) that replace x and y. These “new” similarity variables are defined as   

           

1

U
( , ) ∞η ≡

ν
x y y

x
  ,     

2

U
( , ) ( ( )) ∞ξ ≡ − ∆

ν
x y y x

x
.                                          (15) 

The physical variables of velocity and temperature are sought as functions (viz. f1, f2, g1, and g2) 

of the variables introduced above. The defining relations for these physical variables (see Koh 

[2]) are: 

 pI(x,y) = p∞ = constant   (I = 1 or 2),  1
Koh( ) ( )

U
δ

∞
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x x  ,  )(U)(

'

11 η≡ ∞ fyx,u        (16) 

       )(U)(
'

22 ξ≡ ∞ fyx,u , 1 1( ) . ( ),
w

− ≡ ∆ ηT x  , y T T g )(.),( 22 ξ∆≡− gTTyxT
w

              (17) 
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Eqs. (15) - (17) transform the governing equations (A.1), (A.6), and interface/boundary 

conditions (A.7)-(A.12) given in the Appendix for the Koh formulation [2], to (also see [2]) a set 

of ordinary differential equations (ODE) over the liquid (0 ≤ η ≤  ηδ) and vapor (0 ≤ ξ < ∞) 

domains with proper boundary conditions at η = 0, η = ηδ, ξ = 0, and ξ → ∞. This ODE 

formulation – unlike the formulation in section 2 – is always such that a unique steady solution 

exists and can be numerically obtained by a suitable method (e.g. fourth order Runge-Kutta 

method combined with a shooting technique that can satisfy all the boundary conditions). Thus, 

the steady Koh formulation (which is always well-posed and solvable for plates of large finite 

length) cannot, by itself, assess attainability issues for these solutions. The solution obtained by 

Koh’s method, based on the results presented here, are found to represent a meaningful 

approximate solution, when a solution exists, either as a steady solution of the steady version of 

the formulation in section 2 or as the long term steady limit of the unsteady formulation in 

section 2. 

 

4. Computational Approach 

A detailed description of the 2-D steady/unsteady computational approach utilized in this 

paper is given in section 3 of Narain et al. [18]. A brief description of all essential features of 

computational approach is also available in section 3 of Liang et al. [19]. Since this paper 

investigates an external flow problem, unlike the internal flows discussed in [18] and [19], the 

imposition of the top and exit boundaries for this external flow is different from the internal flow 

situations but is the same as the one given by us in Phan and Narain [16] for the external flow 

Nusselt problem [7]. The difference is primarily another use of the earlier established ([14]) τ-p 
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method towards prescribing stress boundary-conditions – i.e., pressure (with τ = normal 

derivative of the tangential velocity component = 0) on the top (AB in Fig. 1) and side (BD' in 

Fig. 1) boundaries. The τ-p method was originally developed (see [18]) for prescribing τ 

(tangential velocity gradient in the normal direction) and p (pressure) at the interface. 

 

5. Computational Results Obtained for Steady Solutions 

5.1 Results Obtained for the Full Steady Problem and Comparison with Koh Solution [2] 

Even though refrigerant R113’s properties were used to run most of the computational 

simulations presented in this paper, similar results are expected, in principle, for any non-

metallic pure vapor flowing over a flat plate.  

The Koh formulation [2] discussed in section 3 is best represented by solution of the 

steady problem under unspecified exit conditions (see eq. (11)) as described in section 2. After 

establishing near equivalence of solutions obtained by imposing exit conditions under 

formulations [A] and [B] of section-2, the formulation [B] is used here to obtain the 

computational solutions of the steady problem and to discuss their comparisons with the 

corresponding Koh solutions [2]. For a representative R113 flow case, specified by sufficiently 

fast U∞ = 2 m/s, xe = 45, ∆T = 5º C, and gy = 0, the results obtained from steady solution are 

shown in Figs. 2-6. Figure 2 compares, for a representative case, non-dimensional film thickness 

values predicted by computational solution of the complete steady version of the formulation 

described in section 2 with the numerical solution of the Koh formulation [2] described in 

section 3. 
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It is seen that the computationally obtained values of film thickness are in good 

agreement with the classical similarity solution as the underlying boundary layer approximations 

for the Koh formulation [2] are approximately valid. For the case in Fig. 2, comparisons of vapor 

and liquid u-velocity profiles and liquid and vapor temperature profiles as obtained from the two 

different solution approaches were found to agree with each other (not shown here for brevity). 

Thus film thickness, velocity profiles, and the temperature profiles from our simulations 

are in good agreement with Koh’s approximate solution. This establishes that, for the ranges of 

vapor speeds investigated here, the solution obtained from Koh’s similarity formulation (see 

summary in section 3) yields film thickness, velocity, and temperature profiles with reasonable 

accuracy (e.g., both the formulations yield, as expected, linear velocity and temperature profiles 

in the liquid domain for the laminar condensate flow). 

For the case in Fig. 2, Fig. 3 shows the non-dimensional pressure variation π2(x, y) for 0 

≤ x ≤ 45 in the vapor domain along the x direction at y = 0.8 (note that, for the corresponding 

case in Fig. 2, δ(xe) < 0.8 and, therefore, y = 0.8 is entirely in the vapor). The Koh formulation 

[2] in section 3 neglects the pressure gradient terms in the governing momentum equations but, 

as seen from Fig. 3, there is a zone 0 < x ≤ x* near the leading edge, up to which there exists a 

significant adverse pressure gradient that is needed to slow the vapor down by the amount that is 

consistent with the slow motion of the adjacent condensate and mass transfer across its interface. 

After this length x* (= x*/Ye), pressure gradient dπ2/dx reduces nearly to zero value and Koh’s 

[2] assumption of uniform pressure is valid.  The pressure gradient in this frontal zone (0 < x ≤ 

x*) is very significant in determining the vapor and condensate dynamics for this horizontal 

condensing flow problem. As the vapor speed reduces, this pressure gradient is found to 

increase. For the same case, the non-dimensional pressure profiles (values of π2(y) for y ≥ δ(x) 
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and values of ρ1π1(y)/ρ2 for 0 ≤ y ≤ δ(x)) across the plate at different cross sections are shown in 

Fig. 4. The pressure discontinuities across the interface in Fig. 4 arise from the last two terms on 

the right side of Eq. (3) and are found to be inconsequential because of their smallness. The 

cross-sectional pressure rise seen in Fig. 4 over the same frontal part, is needed to provide the 

necessary centripetal acceleration for bending some of the streamlines (see Fig. 5) towards the 

condensate. As seen from Fig. 3, the pressure variations over the locations x ≥ x* are 

insignificant as π2 (x, y = 0.8) ≈ 0. In the computational results obtained from the formulation 

described in section 2, this bending of streamlines is assisted by pressure variations along and 

across the vapor domain as well as the variations in interfacial velocities (see, e.g., u1
i variations 

in Fig. 6). Unlike this solution of the full formulation, in the similarity solution obtained from the 

formulation summarized in section 3, the pressure and interfacial velocity variations are not 

present and the bending of the streamline is kinematically enforced by an assumed constant value 

of pressure, constant value of interfacial velocity (u1
i ≈ u2

i) independent of x, and condensate 

thickness values constrained by Eq. (16). Though, in the frontal portion of the plate, the 

computational solution of the full problem significantly differs in its pressure predictions from 

the Koh solution [2] obtained under the assumption of constant pressure, the two solutions differ 

by less than 1 % in the important heat transfer rate controlling values of film thickness variation. 

This agreement (within 1-2%) for film thickness variations was found to be valid over a range of 

flow parameters (2 ⋅ 105 ≤ Rex ≤ 6 ⋅ 107, 0.02 ≤ Ja ≤ 0.12, 0.0052 ≤ (ρ2/ρ1) ≤ 0.00526, 0.020 ≤ 

(µ2/µ1) ≤ 0.0212, 7 ≤ Pr1 ≤ 7.5) investigated by us. 

The differences in the pressure fields cause the differences between the simulation and 

the Koh solution in the converged values of the vertical and horizontal component of condensate 

velocities at the interface viz. v1
i = v1(x, δ(x)) (not shown) and in u1

i = u1(x, δ(x)) shown in Fig. 
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6. Figure 6 shows a mismatch between the horizontal components of interfacial velocities as 

obtained by computational solution of the full steady problem and those obtained by the Koh 

similarity solution [2]. This mismatch occurs over a leading edge zone (0 ≤ x ≤ x*) that is the 

same for which there is significant variation in vapor pressure field (see Fig. 3).  

The streamline pattern (Fig. 5) obtained from computations has been compared with the 

streamline pattern (not shown) obtained from the Koh solution [2] for the same case. Both of the 

patterns were found to be very similar to each other. It is seen that the streamlines bend at the 

interface and that this bending reduces at the interface as one moves further downstream in x 

direction.  

It is also found that, over the relatively short distances and vapor speeds considered in 

this paper, the transverse component of gravity insignificantly affects the film thickness values 

and velocity profiles of the steady solution. The transverse component of gravity does, however, 

affect the condensate pressure profiles in the y direction and we also know - from the results 

given [9] for internal condensing flows in horizontal channels – that transverse component of 

gravity does affect the flow at sufficiently long downstream distances once condensate thickness 

is “sufficiently” large.  This version of our simulation tool for this external flow problem is not 

able to go far enough downstream to detect the phenomena we have observed, in [9], for internal 

flows in horizontal channels. 

The above discussions for U∞ = 2 m/s describe a region 0 ≤ x ≤  x* (≈ 20) for which the 

pressure variations in the vapor phase (Figs. 3-4) and interfacial speed u1
i (Fig. 6) differ from the 

Koh solution [2] and yet the film thickness variations in Fig. 2 are close to the Koh solution [2] 

for all x > 2 and not just x > 20. If U∞ is reduced, it is found that the value of x* decreases, film 



 25 

thickness values increase, and the physical values of interfacial shear Si ≈ µ1 (∂u1/∂y)|i also 

decrease as per Koh [2] predictions.   

5.2 Numerical Accuracy and Regularities of the Computationally Obtained Solutions 

The computational procedure for obtaining steady and unsteady solutions as described 

above, was verified for accuracy and consistency with regard to different choices of the number 

of grid points as well as different choices of the characteristic length Ye appearing in Fig. 1 and 

in the definition of non-dimensional parameters listed in Eq. (14). 

We only show here grid independence for the steady solution scheme employed here 

though similar grid independence has also been established for the reported unsteady solution 

scheme. In Fig. 7, film thickness variations for the same flow situation is computationally 

obtained for two different grids and two different choices of Ye values. In Fig. 7, Ye = 0.004 m is 

used for “Grid 1” and Ye = 0.008 m is used for “Grid 2.” Furthermore, for “Grid 1” and “Grid 2,” 

the number of grid points represented by “ni x nj” values (see Narain et al. [18]) are respectively 

given as 30 x 50 and 35 x 70. Although Fig. 7 only shows the nearly equal values of the two 

equivalent non-dimensional film thickness values, similar proximity of the two solutions was 

confirmed for velocity, temperature, and relative pressure profiles as well. From computational 

point of view, it should be observed that shear driven horizontal condensing flows, as opposed to 

gravity driven flows ([15] – [20]), require more iterations to converge.  

5.3 Other Comments/Results 

Since the computational cases deal with high vapor velocities (U∞  = 0.2 – 20 m/s), it is 

natural to ask whether the Koh [2] assumption of laminar nature of the vapor flow holds for the 

near interface region. Since the near interface vapor flow is qualitatively similar to a boundary 
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layer flow with suction, it can be assumed that the transition to turbulence criteria for such 

boundary layer flows – as given by Eq. (17.10) of Schlichting [23] – will yield reasonable 

estimates for determining whether or not the vapor boundary layer flow in the Koh problem [2] 

is laminar or turbulent. The computationally obtained vapor boundary layer (momentum) 

thickness ∆v values in the Koh solution as well as the values obtained from the computational 

solution was used to verify that Eq. (17.10) of [23], viz. ρ2U∞∆v(x)/µ2 << 70,000, holds for all 

cases considered here. That is, these vapor flows, because of the suction effects, appear to be 

strongly laminar at all x locations considered here. However, such vapor-phase boundary-layer 

stability arguments based on vapor suction rates, may miss “stability” or “noise-sensitivity” of 

the associated condensate motion and this must be separately assessed in determining 

attainability and waviness of these flows.  

 

6. Computational Results Obtained from Unsteady Solutions 

6.1 Unsteady Simulation Results That Indicate the Domain and Attraction Rates of the 

Steady Solution 

The unsteady computational solutions based investigations cover speeds U∞ in a range of  

0.2 m/s < U∞ < 20 m/s (for the reported R-113 and similar vapors) and, for temperature 

difference ∆T, a range of 3 – 15˚C is covered. For this range, it is found that, if the unsteady 

solution was started at t = 0 from a reasonable initial guess for δ(x, 0), it would always seek a 

long–term time independent steady solution. The long-term (t → ∞) steady solution of the 

unsteady governing equations is found to be computationally equal (within 3 to 5% of 

computational error) to the steady solution obtained by solving the steady governing equations. 
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This long-term (t → ∞) steady solution obtained this way is termed an “attractor” because 

unsteady solutions starting at different initial guesses are attracted to it. 

Though these solutions in Fig. 8 show the existence of a steady attractor, we observe that 

the phenomenon of attraction in Fig. 8 shows a different attraction rate to the steady solution at 

different downstream locations. The example shown in Fig. 8 is for R-113 vapor at U∞ = 1.7 m/s 

and ∆T = 5˚C. In Fig. 8, the unsteady solution is started at t = 0 with an initial guess of δ(x, 0) 

that is about 16% below the final attracting steady solution. A similar attracting behavior, though 

not shown here, exists if the initial guess was somewhat above the long term steady solution. It is 

seen from Fig. 8 that the attraction to the steady solution takes progressively longer times for 

locations that are farther and farther downstream of the inlet. The steady solution “attractor” in 

Fig. 8 is said to have a “strength” which diminishes with x. Here, by “strength,” one means the 

rate of steadily falling values of ∂∆/∂t as indicated by representative slopes of “∂∆/∂t vs. t” 

curves for different values of x (these slopes are indicated by representative line segments AB, 

A'B', etc. in Fig. 9). As shown in Fig. 9, for the no-noise unsteady simulation results at x = 0.12 

m, initial guess at any x has a delay time 
D1

τ  over which the attraction speed ∂∆/∂t|init does not 

change by much. Following this, over time duration τeff, there is a nearly constant representative 

deceleration rate 2 2

Rep|(no noise)−
∂ ∆ ∂t  (termed “attraction rates” and measured by the slopes of 

lines AB, A´B´, etc.). This deceleration rate is needed to impede the attracting solution so it can 

reach a nearly steady (∂∆/∂t  ≈ 0) behavior over a subsequent time duration D2τ .  

 Figure 10 shows “∂∆/∂t vs. t” curves at x = 30 for three different vapor speeds. For all 

the speeds compared in Fig. 10, initially guessed δ(x, 0) values were approximately 16 % below 

their corresponding long-term steady solutions. In Fig. 10, it can be seen that the attraction rate  
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2 2

Rep|(no noise)−
∂ ∆ ∂t  increases with increasing speed U∞ and, through Fig. 9, it can be seen that the 

attraction rate decreases with downstream distance. 

Figure 11 shows, at x = 23 and U∞ = 2 m/s, “∂∆/∂t vs. t” curves for different initial 

guesses. It is shown in this figure that the “attraction rates” obtained over the time segment 
Repτ

are, indeed, more or less independent of initial conditions and thus represent the inherent 

character of the attracting steady solution. This justifies use of the magnitude of deceleration 

rates - given by the approximate slopes of the line segments AB, A'B', etc. - as “attraction rates.” 

The above described trends were established for R113 flows for a range of vapor speeds 

0.2 m/s ≤ U∞ ≤ 20 m/s, a range of temperature differences 3˚C ≤ ∆T  ≤ 15˚C, and a range of 

domain lengths 0 ≤  Xe  ≤  0.4 m. 

6.2 Stability of the “Steady Attractors”/Steady Solutions to Initial Interfacial Disturbances 

The long term steady limit of the unsteady solution was found to exist (and be the same 

as the steady solution of the steady problem) for this horizontal external flow problem if the inlet 

speed U∞ was above a certain threshold value (about 0.2 m/s for the example case discussed 

here). These solutions were tested for their response to the initial disturbances on the interface. 

Different vapor speeds ranging from 0.2 to 25 m/s were tested for interfacial disturbances of 

different non-dimensional wavelengths ranging from 5 to 30. Over the downstream distances 

investigated here, these external flows of vapor were found to be quite stable to the forward 

moving disturbances on the interface - whether or not transverse gravitational field was present. 

A representative example of this stable response to interfacial disturbances is shown in Fig. 12 

where - even in the absence of the transverse component of gravity - the large initial disturbances 
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die out for the inlet vapor speed of U∞ = 3 m/s and ∆T = 5oC. Computations show very stable 

response to these disturbances and all of these disturbances die out as the waves move 

downstream. The response to imposed disturbances in the initial (t = 0) values of velocities (not 

shown here) was found to be similar to the ones in Fig. 12. However the unsteady solutions, as 

expected, showed longer persistence (i.e. smaller “decay rates”) in the weakly attracting (i.e. 

smaller “attraction rates”) downstream portions of the flow. Recall that this paper has chosen the 

measure of “attraction rates” over “decay rates” because: (a) they are computationally easier to 

obtain, (b) they are physically meaningful even in the non-linear context (i. e. without the 

requirement of modeling time behavior by an exponential function of time), and (c) they also 

relate to physical attainability of steady flows. The response of the solution to disturbances when 

transverse downward component of gravity is present was also found to be equally stable 

because of the thinness of the film over the distances our computations could be implemented.  

The above described response is different than the response [16] for the gravity driven 

external flow problem of Nusselt [7], where the gradually speeding condensate allows 

disturbances on the interface to grow only after a certain critical distance x and only for 

wavelengths λ ≥ λcr, where λcr is a certain critical wavelength. For gravity-driven flows, it was 

this inertial instability associated with speeding condensate that marked the transition from 

smooth laminar to wavy laminar flows. This typically happened when the condensate Reynolds 

number Reδ (≡ ∫
∆

0

111 µ/d).(ρ4 yx,yu ) - which represents the size of inertia to viscous forces 

associated with fluctuations (a quantity which increases with x) - was computationally found to 

be higher than some critical value in the range of 20 ≤ Reδ ≤ 40. In contrast, the above described 
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stable response for the Koh problem involved a much more weakly increasing Reδ values with 

Reδ ≤ 10. 

Therefore the reasons for this external flow showing very strong and stable response to 

initial disturbances are: 

• The condensate flow is slow because it is not driven by gravity, and hence, the mechanism 

for the wave evolution on the interface is very different as compared to the gravity driven 

flows in which the liquid condensate accelerates. 

• The well defined far field pressure prescription of p∞ (along AB and BD' in Fig. 1) and the 

process of condensation (mass transfer at the interface) make the flow more stable as 

compared to the known Kelvin Helmholtz instability (see [24] – [25]) for adiabatic (air water 

type) flows which do not involve gas-phase suction or mass transfer in to the liquid phase. As 

shown in Fig. 12, this well known dynamic instability for adiabatic flows is truly suppressed. 

This suppression of Kelvin Helmholtz instability for the interface is over and above the 

earlier described issue of delayed transition to turbulence in the vapor boundary layer due to 

vapor suction effects. 

 Despite the fact that, in the presence of non-zero interfacial mass flux, these flows show 

no instabilities over the distances considered, one still expects that at larger downstream 

distances, the flow will undergo transition to waviness whether or not transverse gravity is 

present.  
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6.3 Sensitivity of “Attractors”/Steady Solutions to Persistent Condensing-Surface Noise  

Irrespective of their stability to initial disturbances superposed on the interface, the stable 

solutions obtained for this external condensing flow over a horizontal plate are found to be 

sensitive to small and persistent condensing-surface noise of standing wave types - whose single 

representative Fourier component is modeled as shown in Fig. 13. While response of condensing 

flows to these types of noise has been considered for internal condensing flows in [18]-[19] and 

also for an external condensing flow ([16]), this paper reports, for the first time, a quantitative 

analysis of the resulting wave forms along with a quantitative measurement of the resulting 

noise-sensitivity. The ever-present miniscule condensing surface noise is assumed to have a 

standing wave pattern in transverse displacement of the plate (of the type indicated in Fig. 13) 

with a representative Fourier component of the form: 

                                                     w max p

p

2π
( ) sin cos2πf

λ
= ⋅D x,t D

x
t                                            (18) 

where,  λp (≡ λ·Ye)  is a physical wavelength (≥ 0.02 m), fp  (≡ f·U∞/Ye) is a physical frequency (0 

- 15 Hz), and Dmax is a physical amplitude (0  – 5 µm) with which the condensing-surface is 

likely to vibrate under typical ever-present noise conditions that are neither seen nor heard. The 

flow sees this noise through the following boundary condition for the vertical component of 

liquid velocity at the bottom wall location (y = 0):  

                                                              v1(x, 0, t) = vmaxsin(2πx/λp)·sin(2πfpt).                                   (19) 

Since, v1(x, 0, t) = ∂Dw(x,t)/∂t , it follows that the amplitude vmax (≡ εw·U∞) in Eq. (19) above is 

related to Dmax in Eq. (18) by 
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                                                                          vmax = -2πDmaxfp  .                                                       (20) 

It has been established – by post processing the details of the resulting wave forms – that 

the response of the interface is of the form  

                         ∆(x, t) - ∆(x)steady = {a(x) sin[(2πx/λp) + γ0(t)]·cos[(2πfpt)+ψ0(x)]},                   (21) 

where, a(x) is the x-dependent amplitude of the resulting standing wave pattern on the interface. 

Thus, waves on the interface, in response to the bottom wall noise, do have the same spatial 

wavelength λp and temporal frequency fp as that of the displacement noise component Dw(x,t) 

experienced by the condensing-surface. However, the phases of the interfacial waves slightly 

differ from that of the condensing-surface’s transverse displacement wave. The spatial phase 

difference is time dependent and is denoted by “γ0(t)” and the temporal phase difference is 

location dependent and is denoted by “ψ0(x).” Figure14 shows the unsteady interface at different 

times in response to the representative condensing-surface noise. For the cases considered in this 

paper, over a wide range of different affecting parameters, it is found that the amplitude a(x) of 

these interfacial waves increases with x and can be determined. However spatial phase difference 

function γ0(t) is a sufficiently weak function of time and the temporal phase difference ψ0(x) is a 

sufficiently weak function of space that they cannot be determined, with sufficient precision, 

with the help of the simulation tool employed here. The spatially growing noise-induced waves 

are expected to be related to Reδ values – which represents both the cross-sectional liquid mass-

flux and the effects of local interfacial mass-flux m� . The noise-sensitive values of the 

amplitudes a(x) (≡ a(x)/Ye) of these interfacial waves were computationally obtained for different 

flow cases for a range of different non-dimensional parameters viz. wavelength λ (≡ λp/Ye), 

bottom wall velocity amplitude εw (≡ vmax/U∞), and frequency f (f ≡ 1/Tw ≡ f p·Ye/ U∞). The 
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amplitude a(x) values were measured by looking at several peak values of computationally 

obtained “δ(x,t) - δ(x)steady” signals in the space-time domain. After obtaining the values of a(x) 

at different x locations, for different flow cases involving different Dmax values , linear curves – 

as in Fig. 15 - were found to be adequate fits to the data of a(x) over the range of distances 

considered. This linear relation can be expressed as  

a(x)/Dmax = 
1c x  + 

2c                                               (22) 

where 
1c  and c2 are respectively found to be 120.9 (m-1) and 3.00 for R-113 flow parameters 

indicated in the inset of Fig. 15.  

6.4 Non-attainability of Steady Film Flows at Lower Vapor Speeds 

 The computational results presented earlier in this paper were mainly for R113 vapor 

flows at speeds: 10 m/s > U∞ > 0.2 m/s. As one approaches the lower vapor speeds (U∞ ≤ 0.2 

m/s) in Fig. 16, unsteady solutions show non-existence of a steady long term (t → ∞) limit that 

exists for U∞ > 0.2 m/s. One is tempted to say that the steady solutions for  U∞ > 0.2 m/s loses 

stability as speed U∞ is lowered further but the situation is different because one does not find, at 

least computationally, a steady solution for U∞ < 0.2 m/s. Since one does not have a steady 

solution in this range, one cannot say that the steady solution for U∞ < 0.2 m/s has lost its 

stability. This non-existence of a steady limit is a gradual phenomena which is depicted in Figure 

16. The signs of non-existence of a steady limit is especially apparent in the aft portion of the 

flow for vapor speed U∞ = 0.08 m/s. This is different than noise-sensitive steady limits discussed 

earlier for higher speeds (also see U∞ = 0.2 m/s in Fig. 16 which exhibits existence of a steady 

limit). This fact is more apparent through Fig. 17 which plots long term physical values of rate of 

change of film thickness (∂∆/∂t) at a fixed ‘x’ location (x = 30). It can be seen that as vapor 
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speed reduces below some critical value (below 0.2 m/s), the rate of change of film thickness 

starts increasing indicating above its effectively zero value (which is defined in Fig. 17, within 

computational errors, to be 1.5x10-7). This sustained unsteadiness at such low vapor speeds 

implies non-attainment of any limiting steady solution of the film condensation type and one 

expects an eventual long time behavior that involves a more complex liquid-vapor morphology.  

 It is known that, as vapor speed reduces, the available shear stress for driving the thin 

liquid film reduces and, also, more kinetic energy of the vapor is deflected away from the 

condensate (the upward bending streamlines in Fig. 5 cover more of the leading edge and 

pressure gradients near the leading edge – as shown in Figs. 3-4 - become sharper). The 

gradualness of the loss of the above described steady limit (i. e. existence of steady film wise 

solution) is further demonstrated by insufficient availability of mechanical energy (i.e. near zero 

values of viscous dissipation rates in Fig. 18).  

 When we plot, in Fig. 18, the viscous dissipation rate φ (see Eq. (A13) in the Appendix) 

at which energy is dissipated in the interior of the vapor and the liquid phases inside any 

representative control volume for which long term steady solutions exist, it is observed that, as 

vapor speed decreases (and approaches values below U∞  = 0.2 - 0.3 m/s), the dissipative energy 

asymptotically approaches negligible or near zero values. Figure 18 shows normalized 

dissipative energies (φ/φref) as obtained by steady as well as long-term steady solutions of this 

problem in a representative control volume defined by 0 < x < 40 and 0 < y < 0.5. Even though 

the energy dissipated in any control volume depends on its size, it was observed that the 

normalized values follow exactly the same trend irrespective of the size of the control volume. 

Here the normalizing dissipation rate φref  is the value of φ for the chosen control volume at 

speed U∞  = 3 m/s. In Fig. 18, the value of  φref =  3.48x10-2  W for U∞ = 3 m/s and a control 
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volume defined by 0 < x < 40 and 0 < y < 0.5. For vapor speeds between 1 m/s < U∞ <  3 m/s, 

the thick line in Fig. 18 shows φ/φref values as obtained from the steady solutions while the 

dotted line in Fig. 18 shows φ/φref values obtained from long-term steady limits of unsteady 

solutions for 0.2 m/s < U∞ <  3 m/s. There were some algorithmic issues in the steady solver for 

0.2 m/s < U∞ < 1 m/s whose improvements were not considered necessary and therefore were not 

included for results in Fig. 18. It should be noted that the integral theorem on expended 

mechanical power (see Ch. 15, [26]) or the integral form of mechanical energy equation (see Eq. 

(5.4.13) of [27]) says that a steady solution exists if and only if φ/φref  > 0 and this condition is 

hard to satisfy in Fig. 18 for 0 m/s < U∞ <  0.2 m/s because the energy for U∞ = 0, where the 

theorem is violated, is effectively equivalent to the energy at U∞ = 0.2 m/s. This fact that energy 

available to dissipate at U∞ <  0.2 m/s (say U∞ = 0.08 m/s) is effectively the zero value associated 

with U∞ = 0 should lead to a response that is also somewhat similar to what is expected at U∞ = 0 

and fixed ∆T . Clearly, for U∞ = 0 and fixed ∆T , one expects a rising unsteady film type solution 

which is similar to what is being found in Fig. 17. However the flow for 0  < U∞ <  0.2 m/s also 

has an option to come to a new quasi-steady flow under a more complex liquid/vapor 

morphology.  

 Because of the mutually supportive nature of the above described independent facts, one 

can reliably state that film wise steady condensation solution for this problem is not possible for 

effectively zero inlet speeds that correspond to a certain finite range of values of the type: 0  < 

U∞ < U∞
*.  This result states that Koh solution [2] for 0  < U∞ < U∞

* is not valid. 
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6.5 Additional Sensitivity of These Shear Driven Flows  

 The above described steady solution, under uniform far field pressure (p = p∞) 

assumption, shows stability for U∞ > U∞
* with possible attainability issues (for non-zero 

transverse gravity) and increasing waviness issues only after a sufficiently large downstream 

distance x. Note that shear driven film condensation flows are extremely sensitive because, 

unlike gravity driven flows, the liquid condensate motion is driven by vapor motion and it takes 

minuscule pressure differences to change vapor motion. Therefore any difficulty in 

experimentally achieving far field uniform pressure (p = p∞) condition – particularly near the 

downstream zones of far field locations – will additionally limit the attainability of steady film 

wise condensation for this problem. Furthermore, besides the fact that similar sensitivity is found 

for shear driven internal condensing flows (as described in the Introduction), the role of various 

boundary conditions were also discussed, for finite horizontal plates, by Prasad and Jaluria [28]. 

It should be further noted that these “structural” sensitivities and instabilities associated with 

shear driven annular or film condensation flows are not present for the gravity driven condensing 

flows ([7], [16]).  

7. Conclusions 

• For the ranges of the flow parameters investigated, the Koh solution [2] for film thickness is 

found to be reasonably accurate for horizontal condensing flows over a flat plate under 

conditions of sufficiently fast vapor speeds and nearly uniform far field pressure p∞. Over this 

range, it is found that, there is some departure from the Koh solution [2] in the frontal portion 

of the plate with regard to the values of interfacial velocities and pressure variations in the 
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liquid and vapor domains. The gradients in pressure become sharper as vapor speed reduces 

and such dynamics cannot be captured using analytical solution of Koh [2]. 

• The results show that the presence or absence of transverse component of gravity does not 

change the steady solution by much if only a certain length from the leading edge (lengths 

investigated here) is considered. Over this length only changes in the hydrostatic pressure 

variations, resulting from presence or absence of gravitational component of pressure, are 

observed in the liquid film. 

•  For the ranges of the flow parameters investigated here for R113, unsteady solutions predicted 

that there exists a long-term (t � ∞) steady solution (attractor) for this external condensing 

flow problem. A measure termed “attraction rate” is introduced for the reported “non-linear” 

stability analysis. This value decreases with increasing distance and increases with increasing 

vapor speeds. The qualitative and quantitative variation in the strength of the attractor is 

presented for the cases of U∞  > 0.2 m/s. Unsteady results, along with several supporting 

results, find that at low vapor speeds (0  < U∞ < U∞
* ≈ 0.2 m/s) a film wise steady solution does 

not exist.  

• It is established here that the steady solutions for sufficiently fast external flows and up to 

certain downstream distances are sensitive to persistent noise leading to increasing wave 

amplitudes with distance. However the smooth underlying steady solutions for these cases are 

stable to the momentary initial disturbances (of various wavelengths and amplitudes) on the 

interface.  

• The computational results and physics indicate that the stable attracting solutions for this 

condensing flow over a horizontal plate are not only expected to become very sensitive, at 

large downstream distances, to persistent but minuscule condensing-surface noise but, also, 



 38 

perhaps to presence of transverse gravity and any experimental difficulties in maintaining 

uniform pressure conditions in the far field downstream regions. 
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Appendix 

The differential forms of mass, momentum (x and y components) and energy equations in 

terms of non-dimensional variables for flows in the interior of either of the phases (I = 1 or 2) for 

this external flow are given as  
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where Re1 ≡ ρ1U∞Ye/µ1, Pr1 ≡ µ1Cp1/k1, and Fry
-1 ≡ gy Ye/U∞

2.  

The term [t] on the right side of Eq. (4) is given by:    
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 where, Ma ≡ ρ2U∞c1d1/µ1 is a Marangoni number, c1 ≡ dTs/dp, and d1 ≡ - dσ/dT .        

Under assumptions of: uniform pressure throughout the flow, steadiness (∂/∂t = 0), 

horizontalness (gx = 0), and boundary layer approximations (∂/∂x << ∂/∂y & vI << uI) associated 

with thin condensate flow; the Koh formulation ([2]) effectively replaces (A.2) - (A.4) above by: 



 39 

2

I
2

I

I
I

I
I

y

u

Re

1

y

u
v

x

u
u

∂
∂

≅
∂

∂
+

∂
∂

,  

      
F r 0 , a n d

y

11
y

π −∂
− + ≅

∂
 

 
y

θ

PrRe

1

y

θ
v

x

θ
u

2

I
2

II

I
I

I
I 














∂
∂

≈
∂
∂

+
∂
∂

.                                        (A.6) 

In addition to the above, the Koh formulation [2] also assumes negligible interfacial slope 

approximation (δ´(x)2 << 1) and, as a result, interface conditions given by Eqs. (2)-(6) in the 

section 2 are simplified and respectively replaced by eqs. (A.7) - (A.11) given below:  
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The remaining interface conditions given by Eqs. (7)-(8) in section 2 continue to hold as they 

need no further approximations. Furthermore, for the Koh formulation [2], no top or exit 

condition regarding pressure is necessary. Instead, the inlet and the far-field conditions 

respectively become:  

u2(0,y) = U∞,  and 2
y
limu (x,y)=U∞→∞

.                                                            (A.12) 

Total integral viscous dissipation rate φ (= φ 1 + φ 2) inside any control volume is 

obtained from power law theorem ([26]) or the integral form of mechanical energy equation (see 

[27]) for individual liquid and vapor domains and then adding them together. For any control-
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volume “CVf –total” of the type OABD in Fig. 1, if one denotes the liquid-vapor interface by Σ, 

the bounding surface by “CSf-total,” unit normal on the bounding surface by n, it results in the 

following expression: 

2 2 2
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where prel ≡ p - p∞ is the relative value of absolute pressure p = pI (I = 1 0r 2) with respect to the 

far field pressure p∞ . 
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Figure Captions: 

Fig. 1: The figure shows a schematic for a typical finite computational domain for a film 

condensation flow over a horizontal plate due to a forced uniform vapor flow at the left inlet.     

Fig. 2: For flow of R113 vapor with U∞ = 2 m/s, ∆T = 5 oC, p∞ = 1 atm, xe = 45, gy = 0, and Ye = 

0.004 m, this figure compares non-dimensional film thickness (δ) values for the steady solution 

(obtained from solving the steady governing equations) with those obtained from Koh’s 

similarity solution [2].                    

Fig. 3: For the steady solution of Fig. 2, this figure shows, at a fixed y = 0.8 location, 

computationally obtained variation of non-dimensional pressure π2 with non-dimensional 

distance x.  

Fig. 4: For the steady solution of Fig. 2, Fig. 4 shows computationally obtained y-directional 

variation of non-dimensional pressure π across different cross sections along the domain. The 

pressure in vapor domain above condensate film is represented by π2 and pressure in liquid 

domain below the interface is represented by (ρ1/ρ2) π1. 

Fig. 5: The figure shows the streamline pattern for the case in Fig. 2. The pattern is obtained 

from the reported simulation technique. The contour on the background represents the magnitude 

of uI velocities. 
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Fig. 6: For the steady solution of Fig. 2, this figure compares non-dimensional values of x-

directional liquid velocities at the interface (u1
i) as obtained from the similarity solution [2] with 

those obtained from the computational solution. 

Fig. 7: For flow of R113 vapor with U∞ = 2 m/s, ∆T = 5 oC, p∞ = 1 atm,  xe = 50, and gy = 0,  this 

figure compares non-dimensional values of film thickness δ obtained from simulations for the 

same steady conditions under two different choices of grids (ni x nj) and domain heights Ye. Grid 

1 corresponds to the grid size of 30 x 50 with Ye1 = 0.004 m and Grid 2 corresponds to the grid 

size of 35 x 70 with Ye2 = 0.008 m. Non-dimensional values of δ and x for grid 2 are converted 

and compared in terms of grid 1 (by multiplying them by Ye2/ Ye1). 

Fig. 8: For flow of R113 vapor with U∞ = 1.7 m/s, ∆T = 5°C, and gy = 0, this figure shows non-

dimensional film thickness values at different non-dimensional times given by the unsteady 

solution of the problem. An initial guess given at time t = 0 (about 16 % below the final long 

term solution) is seen to get attracted to the long term steady solution at different rates. The 

markings, at different times, demarcate the zones that have “nearly” converged to the steady 

solution from the zones that have not. 

Fig. 9: For flow of R113 with U∞ = 1.7 m/s, ∆T = 5°C and gy = 0, this figure shows different 

rates of attraction versus time - as indicated by different representative deceleration rates - for 

different x values along the length of the plate. The value of the initial attraction rate ∂∆/∂t (x,0) 

≡ ∂∆/∂t|init as well as the “strength” of the attractors (as marked by the representative magnitude 

of deceleration rates associated with the slopes of the lines AB, A'B', etc.) decrease with 

increasing x. The initial guess of δ(x, 0) for the unsteady solution was 16% below the long term 

steady solution. 
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Fig. 10: For flow of R113 with ∆T = 5°C, gy = 0, and x = 30, the figure shows different rates of 

attraction versus time - as indicated by different representative magnitudes of deceleration rates 

associated with the slopes of the lines AB, A'B', etc. - at different vapor speeds. The initial guess 

of δ(x,0) for the unsteady solution was 16% below the long term steady solution. The figure 

demonstrates higher rates of attraction for higher speeds. 

Fig. 11: This figure shows computationally obtained curves depicting the rate of change of film 

thickness at x = 23 when the unsteady solutions approach the same long-term steady attractor 

from three different initial guesses for flow of R-113 vapor at U∞ = 2 m/s, gy = 0 and ∆T = 5˚ C. 

The three initial guesses 1, 2, and 3 are respectively 2 %, 5 %, and 7 % away from the unique 

long-term steady attractor. The subsequent time duration (marked τRep) over which a nearly 

constant deceleration rate (∂2
∆/∂t2) exists is marked by nearly equal constant decelerating slopes 

of lines AB, A'B', A"B" on curves X, Y, and Z. This shows that for a given vapor speed, the 

above characterized attraction rates over τRep are associated with the long term steady solutions 

rather than the values of the initial guesses.  

Fig. 12: For flow of R113 vapor with U∞ = 3 m/s, xe = 50, ∆T = 5oC, gy = 0, this figure shows the 

stable response of the long term steady solution to the rather large initial disturbance given at 

time t = 0. The non-dimensional disturbance is given as δ(x, 0) = δsteady (x) [1 + εo δ′(x, 0)], where 

δ′(x, 0) ≡ sin (2πx/ λo), εo = 0.35 and λo = 5. The disturbance dies out, almost completely, by the 

time t = 1500. 

Fig. 13: This figure depicts the definition of the type of miniscule ever-present noise given to the 

condensing surface to investigate the sensitivity of condensing flows to persistent disturbances.  
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The inset shows the displacement profile of the condensing surface at two out-of-phase instants 

associated with a mode of the standing wave.   

Fig. 14:  For R113 vapor with U∞ = 3 m/s, xe = 48, ∆T = 5oC, gy = 0, this figure shows unsteady 

response of the flow to the typical condensing surface noise with λ (≡ λp/Ye) = 10, Tw (≡ U∞/(f 

p·Ye)) = 240, εw (≡ vmax/U∞) = 3·10-6.  The noise given to the condensing surface is represented as 

v1(x, 0, t) = vmaxsin(2πx/λp)·sin(2πfpt), where v1(x, 0, t) is condensing surface velocity. Figure 

shows non-dimensional film thickness δ(x,t) plotted vs. x at two different non-dimensional times  

t = 140 and t = 260. The steady film thickness values δ(x)steady are shown as an initial solution at 

time t = 0. 

Fig. 15: For different ranges of condensing surface noise parameters, namely: time period T, 

wavelength λ, and condensing surface velocity vibration amplitude εw, and different vapor 

speeds U∞; this figure plots computationally obtained non-dimensional a/Dmax values (amplitude 

of interfacial waves divided by amplitude of bottom wall displacement waves) against 

dimensional values of x (= x·Ye). The range of R-113 vapor (with gy = 0) flows considered here is 

described in the inset. 

Fig. 16: The figure plots two different sets (for U∞ = 0.2 m/s and U∞ = 0.08 m/s,) of long term 

film thickness values δ (x, t) with x at large non-dimensional times t = 22 s and 34 s. The flows 

are of R113 vapor at ∆T = 5°C and initial conditions (not shown) for each of these cases was the 

Koh similarity solution [2]. For U∞ < 0.2 m/s, the aft portions of these curves suggest non-

existence of
t
limδ(x,t)
→∞  
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Fig. 17: The figure plots long term steadiness measure 
∂∆
∂t

(estimated at x = 40) with free 

stream speed U∞. The flows are of R113 vapor at ∆T = 5°C. The values of 
∂∆
∂t

for U∞ > 0.2 m/s 

is considered effectively zero within computational error. This suggests existence of a long time 

steady solution. However the rising positive values of 
∂∆
∂t

for U∞ < 0.2 m/s suggest non-

existence of a long time steady solution. 

Fig. 18: For flow of R113 vapor with ∆T = 5°C, Xe = 0.2 m, and gy = 0, this figure plots 

normalized viscous dissipation rates φ/φref  (see Eq. (A.13) in the Appendix for the definition of 

φ) obtained from steady and unsteady (long-term) steady solutions in a representative control 

volume given by 0 < x < 40 and 0 < y < 0.5. As the vapor speed U∞ reduces below 0.2 m/s, 

dissipation rates can be seen becoming effectively equal to the zero value associated with U∞ = 0. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 6 
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Fig. 7 

 

 

 

 

 

 

 

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Non-dimensional distance from the leading edge, x 



 55 

 

 

 

 

 

 

Fig. 8 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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Fig. 15 
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Fig. 18 
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