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ABSTRACT 

This paper presents unsteady computational simulation results and supporting 

experimental evidence that show a certain fundamental feature of a purely shear driven 

annular/stratified internal condensing flow with respect to its sensitivity to boundary conditions. 

This feature is termed “elliptic sensitivity.” Shear driven condensing flows occur in 0g, 

horizontal channels, and micro-meter scale ducts of any orientation and they often have, or are 

designed to have, a significant annular/stratified regime. This fundamental feature of the flow 

allows imposition of several possible values of the mean pressure-difference (unlike the usual 

situation of having only one pressure difference value) for a given set of quasi-steady values of 

mass-flow rate, inlet or outlet pressure, and a steady cooling approach for the condensing-

surface. By a quasi-steady time-varying flow variable, it is meant that the variable exhibits a 

steady-in-the-mean value with suitable time periodic fluctuation (s) superposed on it. For most 

common cooling approaches, when a quasi-steady value of the pressure-difference is changed 

(even by an amount in the range of 5 – 200 Pa) in time to another quasi-steady value, it often 

triggers significant changes in the mean condensate thickness, heat transfer rates which induces 

significant thermal transients, and system characteristics outside the condenser. However if the 
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system always allows the flow to self-seek a “natural” pressure-difference across the condenser, 

then purely shear driven flows behave like gravity driven and dominated flows in the sense that 

they are able to achieve a unique and stable realization of a quasi-steady flow with a unique 

(termed “natural”) value of the pressure-difference. The reported “elliptic” sensitivity feature is 

absent for gravity dominated flows for which gravity is so strong that it determines the 

condensate motion as well as its mean interface location. 

1. INTRODUCTION 

Reliable design and effective integration of condensers in traditional macro-scale as well as 

modern micro-scale thermal systems require good flow prediction capabilities (simulations, 

experimentally validated correlations, etc.) and proper flow control strategies. For this, one needs 

to investigate issues pertaining to attainability and control of quasi-steady condensing flows in 

different flow categories (gravity driven, shear driven, etc.) and flow regimes (annular, plug/slug, 

etc.). Most micro-scale condensers and many macro-scale condensers (particularly space-based 

or horizontal condensers) are shear/pressure driven. There is a special need for flow prediction 

and control capabilities for these shear/pressure driven condensers.  

Typical flow morphologies that are encountered in internal condensing flows (see Carey 

[1]) are annular/stratified, plug/slug, bubbly, etc. Of these regimes, particular interest is in 

attainability and controllability of annular/stratified flow regimes under gravity or shear driven 

conditions. This paper’s emphasis on annular/stratified flows is partly because of their high heat 

exchange rates at relatively lower pumping powers. Another reason for the focus on this regime 

is because our simulation capabilities are currently limited to annular/stratified flows, and these 

simulations are required for a good understanding of the boundary condition sensitivities.  
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Available background and knowledge for condensing flows that are relevant to this paper 

can be put in the following categories: (i) excellent available knowledge with regard to exact and 

approximate model equations for mm-µm scale flows and conditions at the interface (Delhaye 

[2], Carey [1], Faghri et al. [3] - [5], etc.); (ii) classical solutions for external film condensation 

flows over vertical, horizontal, and inclined walls (Nusselt [6], Sparrow and Gregg [7], Koh [8], 

etc.) and their subsequent modifications and extensions (Rohsenow [9], Chen [10], Dhir and 

Lienhard [11], Fujii and Uehara [12], Phan and Narain [13], Kulkarni et al. [14], etc.); (iii) 

experimental data and correlation for heat transfer rates for the various external condensing flow 

regimes (Labuntsov [15], Kutateladze [16], Gregorig et al. [17], etc.) as well as internal 

condensing flows (Carpenter and Colburn [18], Cavallini and Zecchin [19], Shah [20], Dobson 

and Chato [21], Shao and Grannid [22], Garimella et al. [23]-[24], Kurita et al. [25], etc.); and 

(iv) flow regime maps for internal condensing flows (Carey [1], Hewitt et al. [26], Cheng et al. 

[27] – [28], Shao and Grannid [22], Garimella et al. [23]-[24], etc.).  

Despite the helpful availability of the above knowledge for condensing flows, some of the 

outstanding issues are: (i) poor agreement between experiments and correlations when general 

purpose correlations are sought or used (see Palen et al. [29]),  (ii) incomplete understanding of 

parameters and conditions that may make development of flow regime maps,  particularly for 

experiments dealing with shear driven flows (see Cheng et al. [26]-[27], Garimella et al. [23]-

[24], etc.)  more reliable and repeatable, and (iii) insufficient understanding of the sensitivities of 

these flows to condensing surface vibrations, inlet/outlet flow fluctuations, and pressure-

difference impositions across a condenser that is exposed to popular cooling approaches in 

commonly occurring closed-loop  systems for various applications. 



4 

 

  The computational/experimental research results reported in this paper contribute towards 

addressing some of the outstanding issues alluded to above. This is because of the reported 

identification of a fundamental feature (termed “elliptic sensitivity”) of purely shear/pressure 

driven annular/stratified internal condensing flows. This fundamental feature of the flow allows 

imposition of several possible values for the mean pressure-difference (unlike the usual situation 

of having only one pressure difference value) even as the flow operates at a specified set of 

quasi-steady values for: mass-flow rate, inlet or outlet pressure, and a cooling approach for the 

condensing-surface.  Since quasi-steady flows mean presence of time-periodic fluctuations 

superposed on a steady mean value of a flow variable, and such fluctuations are ubiquitous 

because of presence of compressors and pumps in real systems, the impact of the identified 

fundamental feature of “elliptic sensitivity” is quite significant in making sense of experimental 

data in the literature, in practice, and those reported here.  Because of this, the reported results on 

this fundamental feature of internal flow condensation (which is possibly also applicable to 

internal flow boiling) is expected to assist in mapping a course for future research for: (a) better 

control of these flows, (b) enhanced heat transfer rates, and (c) ensuring repeatable behavior of 

the condenser (or boiler) by properly designing closed loop systems that employ flow condensers 

and/or flow boilers.   

The computational results in this paper corrects some of our earlier results ([30]-[34]) on 

“elliptic sensitivity” of internal condensing flows. Both the earlier results ([30]-[34]) and this 

paper agree on the existence of a “natural” steady solution of the strictly steady governing 

equations when the flow is allowed to self-seek its “natural” pressure-difference under 

“parabolic” boundary conditions (e.g. a given steady inlet vapor mass flow rate, steady inlet or 

exit pressure, and a known steady cooling approach for the condensing-surface that defines its 
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thermal boundary condition). The error in the earlier results ([30]-[34]) was that it said multiple 

steady pressure-difference impositions were possible (termed “elliptic” behavior) and that this 

led to multiple steady solutions of the inherently “elliptic” steady governing equations. The 

corrected result in this paper says that there is only one unique “natural” steady solution of the 

strictly steady governing equations - which are, therefore, “parabolic” in nature. However, in 

most practical situations, there are multiple quasi-steady solutions because it is the unsteady 

equations (not the steady equations) that are inherently “elliptic” and hence allow multiple quasi-

steady pressure-difference impositions. The multiplicity of the steady solutions was erroneously 

concluded in the earlier results because the reported quasi-steady solutions are often very close to 

the strictly steady solution, and computational errors in [30]-[34] went unnoticed and 

uncorrected at the time of their reporting. Furthermore, at this time, we also have an independent 

one-dimensional solver ([35]) which confirms the inherently “unique” solution of the strictly 

steady governing equations under “parabolic” boundary conditions (see definition in section-2).  

Besides the computational results reported in this paper, the experimental results reported 

in this paper also confirm the fact that shear driven internal condensing flows allow multiple 

quasi-steady flow realizations due to multiple quasi-steady pressure difference impositions (i.e. 

the flows exhibit “elliptic sensitivity”). This result appears to be quite general because the 

thermal-conditions for the condensing-surface that is used for the computational simulations is 

one of steady uniform temperature whereas the one imposed in the experiments is one of the 

more common steady convection-type thermal boundary condition (see sections 2 and 6).  
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2.  TERMINOLOGY AND ESSENTIAL RESULTS AS A MOTIVATION 

FOR THIS PAPER 

2.1 Terminology 

The liquid and vapor phases in the flow (see Fig. 1) are denoted by L (subscript I: I = 1) for 

liquid and V (I = 2) for vapor. The fluid properties (density ρ, viscosity µ, specific heat Cp, and 

thermal conductivity k) with subscript I are assumed to take their representative constant values 

for each phase (I = 1 or 2). Let TI be the temperature fields, pI be the pressure fields, Ts (p) be the 

saturation temperature of the vapor as a function of local pressure at the interface p, ∆ be the film 

thickness, m�  be the local interfacial mass flux, Tw (x) (< Ts (p)) be a known temperature variation 

of the condensing surface (with its length average mean value being T��), and vI = uIi�+vIj�  be the 

velocity fields. The flow fields are defined at every point x (a 3-D Euclidean position vector) and 

time t. Furthermore, the characteristic length Lc for the channel geometry is its channel gap ‘h’ 

shown in Fig. 1 and, for the tube geometry (see [35]), Lc is the diameter D. Let gx and gy be the 

components of gravity along x and y axes, p0 be the inlet pressure, ∆T ≡ Ts (p0) - T�� be a 

representative controlling temperature difference between the vapor and the bottom plate, hfg be 

the heat of vaporization at temperature Ts (p), and U be the average inlet vapor speed determined 

by the inlet mass flow rate inM�  (≡ ρ2•U•h for the channel flow). Let t represent the actual time 

and (x, y) represent the physical distances of a point with respect to the axes shown in Fig. 1 for 

the channel flow (for tube flows in [35], x = 0 is at the inlet, y = 0 is at the tube wall). For the 

channel of height ‘h,’ y = h is an isothermal plate and is a slightly superheated non-condensing 

surface. For the tube in [35], y = D/2 (i.e. r = 0) is the center-line where symmetry condition 

holds for all flow variables of interest. Note that, y ≡ Lc.y represents the distance from the 
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condenser surface, for both channel (Fig. 1) and in-tube (see [35]) flows. We introduce a new list 

of fundamental non-dimensional variables – viz. �x, y, t, δ, uI, vI, πI, θI, m� 	 through the following 

definitions: 

      

C C C

C

I I 1

I I I I I 0 I I

{ , , , , } {L x, L y, L δ, U u ,ρ U m}

2{ , T , p , } {U v , ( Τ) θ , p ρ U π , (L U) t}.t

∆ ≡ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

≡ ⋅ ∆ ⋅ + ⋅ ⋅

��x y u m

v /                                (1)

 

2.2 Steady and Unsteady Flow Behavior of Condensing Flows 

For the convenience of communication of the rather unique nature of the shear driven 

condensing flows we propose a distinction among: (i) parabolic/elliptic boundary conditions, (ii) 

parabolic/elliptic governing equations, and (iii) parabolic/elliptic flow behavior. These terms are 

defined as: 

Parabolic Boundary Conditions 

 In one computational approach, parabolic boundary conditions for the two dimensional 

flow in Fig. 1 requires prescription of the values of inlet mass flow rate inM�  (more precisely, for 

2-D computations, x-velocity profile u2(0, y, t) and a suitable v2(0, y, t)), inlet temperature T2(0, y, 

t), the thermal and hydrodynamic wall conditions on the channel walls (at y = 0 and y = h), and 

either the inlet pressure pin (= p2(0, y, t)) or the exit pressure pexit (= p2(xe, y, t)) at any “one point” 

on the inlet or the outlet cross-section. The procedure for specifying pressure at a point is quite 

similar to specifying reference pressure at one point ([36]) in an incompressible single-phase 

flow. In a second computational approach, parabolic boundary conditions for a two dimensional 

problem consists of:  prescription of the inlet pressure pin (= p2(0, y, t)) and the exit pressure pexit 

(= p2(xe, y, t) that are concurrently specified across an arbitrary line y = y* and 0 ≤ x ≤ xe (i.e. the 
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pressure-difference ∆p  ≡ pin - pexit is specified), inlet temperature T2(0, y, t), the thermal and 

hydrodynamic wall conditions on the channel walls (at y = 0 and y = h), and, in addition, the 

specification of the complete pressure variation across either the inlet or the exit cross-section as 

the normal stress for the stress boundary condition (which requires normal and tangential 

stresses) on that boundary.   

Elliptic Boundary Conditions 

 In addition to the parabolic boundary conditions in the first computational approach 

described above, if one can specify the pressure variation across the boundary (say the inlet or 

the outlet) where the “pressure at a point” was not specified as part of the parabolic boundary 

condition, then such a specification is called an elliptic boundary condition. In the second 

computational approach for the parabolic boundary conditions, if  besides the point pressure pin, 

point pressure pexit, and a cross-sectional pressure variation (over an inlet or outlet boundary); 

one specifies the inlet mass flow rate then this specification will be called an elliptic boundary 

condition.  

Parabolic Governing Equations 

 If the duct flow governing equations (steady or unsteady) are such that the parabolic 

boundary conditions in the first approach are sufficient to fully determine the pressure, velocity, 

and temperature fields elsewhere, then the governing equations are said to be parabolic. The 

parabolic governing equations discretization and solution technique in this computational 

approach (for which the “pressure at a point” at the inlet is prescribed) are such that to determine 

the value of a flow variable at a point one does not need information from any downstream 

location. If the governing equations (steady or unsteady) are such that the parabolic boundary 
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conditions for the second computational approach are sufficient to fully determine the mass flow 

rate inM�  (more precisely, the x-velocity profile u2(0, y, t) and a suitable y-velocity profile v2(0, y, 

t)), then again the governing equations are said to be parabolic. Different approaches (e.g. the 

second approach discussed above) to specify parabolic boundary conditions are all equivalent to 

the first approach (for which the “pressure at a point” on the inlet was specified) because they all 

indirectly exploit the parabolic governing equations’ feature that the flow at a point is only 

affected by the upstream conditions.  

Elliptic Governing Equations 

 If the duct flow governing equations (steady or unsteady) are such that the elliptic 

boundary conditions need to be added to parabolic boundary conditions for either the first or the 

second approach to fully determine (within the domain and relevant parts of its boundary) the 

pressure, velocity, and temperature fields, then the governing equations are said to be elliptic. 

Strictly Parabolic Flow Behavior 

Steady or unsteady incompressible single phase flows (and some immiscible two-fluid 

flows) are examples of strictly parabolic flows. A strict parabolic problem has the following two 

features: (i) for repeatable realization of the flow, the available knowledge of the parabolic 

boundary conditions is sufficient without any knowledge or specification of the remaining 

“elliptic” boundary condition, and (ii) any impositions (with or without fluctuations) of the 

remaining “elliptic” boundary condition is impossible as it can only affect the flow outside the 

flow domain of interest. 
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Strictly Elliptic Flow Behavior 

A strictly “elliptic” flow (steady or unsteady) will have the following feature: for 

repeatable realization of the flow, one needs specifications or knowledge of all the boundary 

conditions – the parabolic and elliptic boundary conditions defined above.  

Incompressible single-phase flows of common experience are always parabolic in 

behavior and never elliptic. This is because information to an interior point does not travel from 

both upstream and downstream locations. Some compressible duct flows are, however, elliptic in 

the above sense. 

Unique and Mixed (Parabolic and Elliptic) Nature of Internal Condensing Flow Behavior 

These flows’ behavior are characterized by the fact that: (i) steady condensing flow 

governing equations are parabolic, (ii) unsteady condensing flow governing equations can be 

parabolic for unspecified exit conditions (i. e. parabolic boundary conditions), and (iii) unsteady 

condensing flow governing equations can also be typically (i.e. for most thermal boundary 

conditions for the condensing surface) elliptic for elliptic boundary condition specification. 

The steady internal condensing flows governing equations under steady parabolic 

boundary conditions for the first computational approach yield unique solutions that predict the 

entire velocity, temperature (including condensing-surface temperature if it was not directly 

specified as a thermal boundary condition), and pressure variations. This means that the steady 

governing equations are parabolic and they define a unique self sought value of the steady 

pressure difference ∆p|Na  ≡ pin - pexit. However shear driven internal condensing flows behavior 

itself does not exhibit strictly parabolic behavior because the unsteady governing equations allow 
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unsteady prescription of elliptic boundary conditions leading to unsteady flows for most thermal 

boundary conditions. The thermal boundary condition for which the wall heat flux profile for the 

condensing surface is fixed is an exception because flows with this boundary condition exhibit 

parabolic behavior. A thermal boundary condition that does not fix a steady wall heat flux for the 

condensing-surface is the one which is usually encountered in practice and is investigated here. 

The ability to impose unsteady elliptic boundary condition for shear driven internal condensing 

flows was found to become gradually impossible as gravity component in the direction of the 

flow becomes large enough to make the flow gravity dominant (see [35]). For example, for a 

representative horizontal channel flow, the flow becomes gravity dominated (see [35]) as the 

condensing plate is given an approximate 1° downward tilt.  

 For partially condensing annular/stratified flows in Fig. 1, if the inlet pressure pin at a 

point is specified as part of the parabolic boundary conditions in the first computational 

approach, the elliptic boundary condition specification of the exit pressure across the exit 

boundary is found to be equivalent to specification of the exit liquid (or vapor) mass flow 

rate M� ��
�t� � � ρ�u��x
, y, t�dy �  ρ�Uh� u�dy �  ρ�Uh�
�

∆
� M�� ��
�t�. With regard to the 

ability to impose unsteady exit liquid mass flow rate as an elliptic boundary condition for 

partially condensing flows when the parabolic boundary conditions described above (for the first 

computational approach) are steady in time, it is found that both the elliptic exit condition and 

the resulting flow must be unsteady in order to impose elliptic boundary condition. For the 

condensing surface thermal boundary condition of fixed and steady temperatures (i.e. Tw(x,t) = 

Tw(x) = constant), there are two types of unsteady elliptic boundary condition specifications that 

are computationally considered here. These are: 
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i. A truly unsteady exit condition specification (e.g. an unsteady specification of  M�� ��
�t� 
in Fig. 2a) leads to a truly unsteady solution – this is demonstrated by the resulting 

unique solution’s unsteady film thickness δ(x,t) values in Fig. 2b. 

ii. A quasi-steady specification of the exit condition (e.g. through a steady-in-the-mean 

specification of M�� ��
�t�, the blue curve in Fig. 3) leads to a quasi-steady solution (as 

shown by a steady-in-the-mean δ(x,t) values with δ�x, t�           !  δ"#�x�) associated with the 

blue curves in Fig. 4. Note that the mean quasi-steady specification does not allow just 

any time-periodic fluctuations on it for the resulting flow to be quasi-steady. The 

superposed fluctuations must be in a class that is compatible with it. The fact that these 

steady-in-the-mean (quasi-steady) elliptic boundary condition impositions are attainable 

in the presence of suitable superposed time-periodic fluctuations of one or more 

hydrodynamic (pressure and/or flow rate/velocity field) boundary conditions illustrates 

the unique “mixed” behavior of the shear dominated condensing flows.  

The ellipticity of the unsteady equations or quasi-steady “elliptic–sensitivity” of the 

steady parabolic boundary conditions computationally demonstrated above (in Figs. 2-3) is not 

limited to the thermal boundary condition that have been considered here (in which condensing 

surface temperature was held steady (at Tw(x,t) = Tw(x) = constant). This elliptic–sensitivity is 

found to manifest - with some variations in the dynamic response - for many other commonly 

occurring steady cooling approaches for the condensing surface. For example, the condensing 

surface thermal boundary condition for the cooling approach in which the condensing-surface 

rejects heat through a negligible thermal resistance slab into a steady coolant flow of constant 

temperature Tres, is modeled by: q�%%  �x, 0, t� � h
'()T�x, 0, t� * T+
,- �  *k�
/01
/2

3|25�  - where 
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the cooling approach itself is steady because the value of the external thermal resistance (1/ hext) 

on a per unit area basis as well as the coolant temperature Tres are steady.   In this paper, the 

elliptic-sensitivity of the quasi-steady condensing flows is experimentally demonstrated for the 

above types of cooling approaches.  

 For the shear driven fully condensing flow experiment employing a rectangular cross-

section (2 mm x 15 mm) horizontal channel modeled as a 2-D channel of Fig. 5, the thermal 

boundary conditions is predominantly of convection type (see section 6), i.e. h
'()T�x, 0, t� *

 T+
,- �  *k�
/01
/2

3|25�, at all locations except locations marked HFX-1/TEC-1 and TEC-2 in Fig. 

5. The reported experiment is able to fix a steady set of parabolic boundary condition, namely: 

cooling approach, the mean value of exit pressure pexit, and the mean value of inlet mass flow 

rate inM� . One set of experiments are done when the inlet pressure is free to self select its value 

for the above described quasi-steady “parabolic” boundary conditions. A repeatable quasi-steady 

(because of unavoidable fluctuations) flow is achieved for t ≤ t0 shown in Figs.6a–6b. The Figs. 

6a–6b show the experimentally achieved quasi-steady values of pexit, M� 67, pin|Na, ∆p, and average 

heat flux q�|89:��%%  over HFX-1. Experimental data reported in Figs. 5-6 are good only for the 

time-averaged mean values and currently they do not precisely measure the fluctuations over the 

reported mean values. Fig. 6c shows that in response to a transient (or unsteady) imposition of 

inlet pressure pin (t) ≠ pin|Na (over t0 ≤ t ≤ t0 + 10 - not shown), the elliptic–sensitivity of the flow 

induces a longer transient (about 65 minutes long) in the wall temperatures (see Fig. 6c) and a 

shorter 8 min transient in heat-flux values q�|89:��%%  (note that heat flux values are being 

reported for a location where the condensing surface temperature was held fixed). The observed 

time varying thermal transient in the condensing-surface temperature (which would be part of the 
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unsteady solution if the problem was computationally solved) proves the unsteady elliptic 

response of the flow due to unsteady elliptic boundary condition imposition (as in Figs. 2-3). 

Unlike computations where the condensing-surface temperature is fixed, the experimental steady 

cooling approach allows (see section 6) thermal transients in the form of induced unsteady values 

for the condensing-surface temperature Tw(x, t). Since the imposed inlet pressure pin (t) is 

eventually steady for t > t0 + 10, a different quasi-steady flow with a different condensing-

surface temperature distribution, (see Fig. 7) is achieved for t > t0 + 65. As a result, very different 

heat transfer rates were observed (e.g. there is an almost 40% enhancement in q�|89:��%%  in Fig. 6 

over the condenser surface area covered by HFX -1) as compared to the original quasi-steady 

flow at t < t0. The relationship between the two quasi-steady flows for the experimental thermal 

boundary condition and the relationship between steady and quasi-steady flows in Figs. 2-3 for 

the theoretical thermal boundary condition of constant temperatures are, however, qualitatively 

different (see section 6). 

 The Figs. 6-7 showing unsteady experimental response resulting from unsteady elliptic 

boundary condition imposition over t0 ≤ t ≤ t0 + 10 confirms a generalized version of the 

computationally established unsteady elliptic behavior in Fig. 2.  

The above described unique qualitative feature of the steady equations’ parabolicity and 

the unsteady equations’ ellipticity arise from the fact that the macroscopic characterization of the 

governing equations are only supposed to reflect the unique and different physics of the acoustic 

waves and interface location fluctuation that underlie the macroscopic governing equations. This 

physics is hidden in the governing equations because the time scale “δt” and fluid element 

volume “δv” of interest associated with these equations are significantly larger than the relatively 
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minuscule time scales “δta” and fluid element volume “δva” that are required to capture the 

signatures of the underlying fast moving acoustic waves and their coupling with interfacial 

locations and mass transfer fluctuations. 

 As an example, when people are talking and listening, at the larger length and time 

scales of interest, the quiescent air satisfies the governing equations of motion whose solutions 

are: zero velocity, hydrostatic pressure variation, isothermal temperatures, and constant density. 

Yet the governing equations at the smaller length and time scales of interest that capture acoustic 

waves yield solutions that have: non-zero velocity fluctuations, non-isothermal temperature 

fluctuations, non-constant density fluctuations, etc. 

Therefore different physical situations (condensing flow, single phase flow, etc.) that lead 

to different parabolic/elliptic sensitivities at the larger length and time scales arise from different 

physics of acoustic waves and other fluctuations with regard to their transmission, reflection, and 

absorption characteristics within the control volume and its boundaries. For example, the 

unsteady elliptic behavior of laminar/laminar internal condensing flows results from the fact that, 

under unsteady elliptic boundary condition impositions, a fluid element in the interior – 

particularly at the interface (which has interfacial waves travelling only in the downwind 

direction (see [33]))– receives and accumulates acoustic waves and the interfacial fluctuations. 

This happens in a way that information from both the upstream and the downstream locations 

matter and one still does not need changes in the incompressible governing equations for the 

larger length and time scales. The net result of this feature is that if one increases in time the exit 

pressure on the vapor phase (for shear driven flows whose condensing-surface cooling conditions 

do not restrict changes in heat-flux values) above its “natural” value, the vapor tries to 

accommodate this by slowing down and accordingly increasing the interfacial mass transfer 
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rates, decreasing the film thickness, increasing the heat-transfer rates, and suitably changing the 

interfacial shear (that keeps the exit pressure for the liquid condensate consistent with the 

imposed pressure on the vapor phase). Analogous but opposite trends occur if the imposed exit 

pressure decreases in time. However it is very important to note that if the time-periodic elliptic 

imposition leads to quasi-steady annular flows, the fluctuations in the interior and the boundaries 

for any two different flow variables must correlate in time in such a way so as to yield non-zero 

time-averaged correlations. This is consistent with the computational results in section-5 and the 

discussions in section 6 for the experimental results.  

 

3. BACKGROUND FOR COMPUTATIONAL AND THEORETICAL 

RESULTS/INVESTIGATIONS 

This section summarizes the 2-dimensional (steady or unsteady) governing equations and 

computational approaches for internal condensing flows in channels (or vertical tubes). These 

approaches/techniques are used to investigate gravity driven, shear driven, and mixed driven 

flows. 

3.1 Two-Dimensional (2-D) Governing Equations 

Interior Equations 

The non-dimensional differential forms of mass, momentum (x and y components), and 

energy equations for the two-dimensional flow in the interior of either of the incompressible 

phases are the well-known equations: 
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Interface Conditions 

The nearly exact interface conditions (see Delhaye [2], Narain et. al. [33] etc.) for 

condensing flows are given in the Appendix  A-1 (see Eqs. (A.1) - (A.8)). Utilizing a superscript 

“i” for values of flow variables at the interface located as ( , ) 0,∆φ y x t≡ − = non-dimensional 

forms of the interface conditions are given below.  

• The non-dimensional form of the requirement of continuity of tangential component of 

velocities (see Eq. (A. 2)) becomes: 

,)v(vδuu i
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i

2x

i

1

i

2 −−=                                                            (3) 

where x.δ/δ x ∂∂≡  

• The non-dimensional form of the normal component of momentum balance at the interface 

(see Eq. (A. 3)) becomes: 

                  ,1
ρ

ρ
m

]δ1[

δ

We

1
π

ρ

ρ
π

2

12

2/32

x

xxi

2

i

1 







−+









+
−= �

1

2
                                            (4) 

where We ≡ ρ1U
2
h/σ, and surface tension σ = σ (T ) where T is the interfacial temperature. 

• The tangential component of momentum balance at the interface (see Eq. (A. 4) in Narain et al. 

[33]) becomes: 
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where the term [t] in Eq. (5) is defined in Eq. (A.9). 

• The non-dimensional form of non-zero physical values of interfacial mass fluxes m� LK and m� VK

(defined in Eq. (A.5)) are required to satisfy kinematic constraints associated with the liquid and 

vapor velocity values of the interface. In the non-dimensional form these are given by:      

 

[ ]
[ ] .

2i

2

i

212VK

2i

1

i

1LK

x)δ/(1/t)δ/(vx)δ/(u)/ρ(ρm

and  ,x)δ/(1/t)δ/(vx)δ/(um

∂∂+∂∂−−∂∂≡

∂∂+∂∂−−∂∂≡

�

�

                                   (6) 

• The non-dimensional form of non-zero physical values of interfacial mass flux m� Energy  (as 

given by Eq. (A.6)) represents the constraint imposed by the net energy transfer across the 

interface and is given by: 

       }n/θ)/kk(n/θ){Pr(ReJa/m
i

212

i

111Energy ∂∂∂∂∂∂∂∂−−−−∂∂∂∂∂∂∂∂≡≡≡≡� ,                                       (7) 

where 0

p1 fgJa C ∆Τ / h≡ , and 0

fg fg s oh h (T (p ))≡ ≅  
fg s 2h (T (p )

i . 

• The interfacial mass balance requires that the net mass flux (in kg/m
2
/s) at a point on the 

interface, as given by Eq. (A.7), be single-valued regardless of which physical process is used to 

obtain it. The non-dimensional form of this requirement becomes: 

            .mmmm EnergyVKLK
���� ≡==                                                    (8) 

It should be noted that negligible interfacial thermal resistance and equilibrium thermodynamics 

on either side of the interface is assumed to hold for x – values downstream of the origin (i. e., 

second or third computational cell onwards). Hence, as per discussions leading to Eq. (A.8) in 

Appendix A-1, no model for the interfacial mass-flux m�  is needed to obtain a solution.  
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• The non-dimensional thermodynamic restriction on interfacial temperatures (as given by Eq. 

(A.8)) becomes: 

                   ( ) ( )i i i i
s1 2 s 2 2

θ θ Τ p ∆Τ π  .θ≅ = ≡                                                  (9) 

within the vapor phase, for the refrigerants considered here, changes in absolute pressure relative 

to the inlet pressure are big enough to affect vapor motion but, at the same time, they are usually 

too small to significantly affect saturation temperatures (except in micro-scale ducts).  Therefore, 

we have )0(θ)(πθ s

i

2s ≅ . 

Boundary Conditions 

 The problem posed by Eqs. (2) – (9) is computationally solved subject to the well-known 

(see [33]) boundary conditions on the top and bottom walls.  

Top wall: The upper wall temperature T2(x, h, t) = T2|0 > Tsat(p0) is at a superheated value (to 

prevent condensation on this surface) close to saturation temperature to allow the assumption of 

a nearly constant saturation temperature for the vapor at all location. This is reasonable because 

effects of superheat (in the typical 5 – 10
o
C range) on the condensation process are quite 

negligible. 

Bottom wall: Besides the no-slip condition (u1(x, 0, t) = v1(x, 0, t) = 0) at the condensing surface, 

one could have several types of thermal boundary conditions. Typically, on different portions of 

the condensing surface, one could have any of the following three types of boundary conditions. 

If the condensing-surface temperature (T1(x, 0, t) = Tw(x)) is prescribed or known, the non-

dimensional form of this condition is written as   

     θ1(x, 0, t) = θW(x) ≡ TW(x) / ∆T         (10) 
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 Here Eq. (10) is known as steady temperature boundary condition for a known 

condensing surface temperature distribution TW(x). The computational results presented in this 

paper limit itself to uniform values of this type of boundary condition. 

Alternatively, one could have the physical heat flux (i.e. q″w(x) = - k1(∂T1/∂y) 0| =y =q″w0 * �q

″(x)) specified directly or indirectly (through convection type boundary condition). For direct 

specification of heat flux, the non-dimensional function q″w(x, t) is a known function of x and t  

hence the thermal boundary condition becomes: 

     (∂θ1/∂y) (x, 0, t) = (q″w0⋅ h⋅ �q ″(x, t)) / (k1⋅∆T)         (11) 

 Equation (11) is known as steady heat flux boundary condition if the non dimensional 

form of q″w(x, t) is q″w(x). This type of boundary condition does not allow flows to exhibit 

‘elliptical sensitivity’ as described in section 2 and is not considered here. Often the heat-flux 

q″w(x, t) is only implicitly known through the convection condition of the type: 

 (∂θ1/∂y) (x, 0, t) = (hexth/k1) {θ1(x,0,t) – θres}             (12) 

where, (1/hext) is known as external thermal resistance and θres = Tres / ∆T is the non dimensional 

value of the reference temperature. 

Inlet Conditions: At the inlet x = 0, we have u2 = U and we prescribe: 

                                       u2(0, y, t) = 1 , 0xv
0x2

=∂∂
=

 .                                           (13) 

 Pressure is not prescribed across the entire inlet boundary but its value p0 is prescribed at 

a point on the inlet boundary – and its value also appears indirectly through important 

thermodynamic properties such as hfg(p2
i
) ≈ hfg(p0) and Tsat(p2

i
) ≈ Tsat(p0). The interfacial 

pressure variations are obtained from the computed values of non dimensional pressures π2
i
(x, y, 

t) and the relation p2 = p0 + ρ2.U
2
 π2 (x, δ(x, t), t). 
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Exit Conditions: 

 In the computational study reported here, “parabolic” boundary conditions for the steady 

problem – as described in section 2 – are the steady inlet pressure p0 (which is prescribed only at 

a point on the inlet boundary), inlet vapor mass flow rate, and the steady wall temperature. 

Therefore, for the steady parabolic problem, no exit boundary condition is specified. For the 

unsteady problem, as described in section 2, “elliptic” boundary condition specifications are 

needed. 

 Unspecified Exit Condition or “Parabolic” Formulation [A]: For partial condensation, the 

“natural” specification of liquid or vapor exit flow rate (or exit pressure) is one that does not 

constrain the flow and allows the flow to “self-seek” its exit condition. This is achieved by the 

imposition of the following “outflow” type condition at the exit: 

e

I
x = x

v
| 0

x

∂
≅

∂                                                                      (14) 

for I = 1 and 2, while concurrently ensuring that the x-component of the exit velocities uI|x=xe are 

positive (for I = 1 and 2) and satisfy the overall mass balance for the entire partially condensing 

control volume in Fig. 1.  

Formulation [B] for Elliptic Boundary Condition Imposition: For unsteady annular/stratified 

internal condensing flow problems (purely shear driven flows – 0g or horizontal channel in Fig. 

1), it is tentatively assumed that exit condition can be specified in terms of exit flow rate (either 

non dimensional exit vapor flow rate 
V e

M̂ (t)−

� at the exit or non dimensional liquid flow rate 
L e

M̂ (t)−

�  

at the exit) or suitable exit pressure specifications (not implemented in this paper). Equation (15) 
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below shows one way that exit condition can be specified in terms of the time varying non-

dimensional liquid exit mass flow rate:

                                               

 

( , )

1 1

1 0

1ˆ ( , , )
eδ(x ,t)

L e 1 e

0y 0
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         ≡ A known function of time t for each t ≥ 0                              (15) 

Even though one can test different constants or time varying values on the right hand side 

of Eq. (15), we already know from our steady solution that there must exist only one unique time 

independent constant value for the right side of Eq. (15) for which a long term (t � ∞) steady 

solution can be obtained for the time independent exit condition imposition in Eq. (15). This 

unique constant must be the same as the one obtained from the solution of the steady equations 

under formulation [A]. Physically these solutions are only realized when one does not constrain 

the flow from self seeking its “natural” exit condition.  The question here is whether other 

unsteady or steady-in-the-mean time-periodic specifications of 
L e

M̂ (t)−

� in Eq. (15) – corresponding 

to a range of system imposed mean exit conditions superposed with suitable time-periodic 

fluctuations can or cannot be imposed to obtain a corresponding range of unsteady or quasi-

steady solutions. 

Initial Conditions 

 If t = 0 is chosen to be the time when saturated vapor first comes in contact and 

condenses on a dry sub-cooled (Tw (x) < Ts (p0)) bottom plate, the above described continuum 

equations do not apply at very early times (t ~ 0). This is because these equations do not model 

and incorporate various inter-molecular forces that are important in determining the time 

evolution of very thin (10 - 100 nm) condensate film thickness δ (x,t). Because of the above 
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modeling limitations, the strategy here is to start at a time (t = 0) for which one has a sufficiently 

thick arbitrary guess or one starts at the steady solution of the continuum equations (where all the 

governing equations clearly apply) and then, from there, one can obtain the natural large time (t 

→ ∞) steady/quasi-steady solutions with the help of the unsteady equations. That is, if φ(x,y,t) is 

any variable (such as uI, vI, πI, θI, etc.), the initial values of φ and film thickness δ(x,t) are such 

that: 

)y,x()0,y,x( steadyφ=φ or φguess(x,y) 

and )x()0,x( steadyδ=δ  or  δguess(x)                                          (16)                

where φguess and δguess  are respectively reasonable but arbitrary initial guesses whereas steadyφ  and 

steadyδ  are solutions of the governing equations obtained by dropping all time dependencies in 

equations (2) – (13) and solving the resulting steady equations for parabolic boundary conditions 

(i.e. by not imposing the exit conditions). 

 

3.2 Quasi One-Dimensional (1-D) Governing Equations and Computational Approach 

The steady solutions for shear and gravity driven flows that have been obtained by the 2-

D approach described above, can also be obtained by a computationally more efficient and 

powerful (though more approximate) 1-D solution technique [35] that has been recently 

developed to support and reinforce the 2-D results. This 1-D technique [35] is based on solutions 

of a coupled set of ordinary differential equations and is not described here for brevity. This 

technique, a brief summary of results obtained from it, and a comparison of some of its basic 

results from those obtained from the 2-D results are reported in this paper.  
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 The quasi 1-D solution technique in [35] is prefixed “quasi” because it uses the exact 2-D 

analytical solutions of the underlying equations obtained from thin film approximations that 

model the condensate motion and its temperature profiles. Only the vapor phase momentum and 

mass balance equations used in this approximation are integral or one-dimensional in nature. 

Therefore accuracy of results obtained from these integral balance law statements depend solely 

on the reasonableness of the choice for vapor velocity profile u2(x, y). 

 

4. ALGORITHM AND REGULARITIES AND ACCURACY OF THE 2-D 

COMPUTATIONAL METHODS  

2-D Approach 

 For a computational solution to be accurate, it needs to meet the following criteria: (i) 

satisfaction of the convergence criteria in the interior of each fluid (since finite volume 

SIMPLER technique is used, it means smallness of “b” defined on p.125 of Patankar [36]), (ii) 

satisfaction of all the interface conditions, (iii) grid independence of solutions for grids that are 

sufficiently refined, and (iv) unsteady simulations’ time varying predictions of the interface 

location should be free of computational noise in the absence of physical noise. The steady and 

unsteady simulation results presented here satisfy all the above criteria.  

The satisfaction of the governing equations in the interior and all the conditions at the 

interface is demonstrated in Liang et al [32]. Let the number of spatial grid lines 

( )i j |L j |V I or II
n n n× ×  in grid-I or grid-II respectively indicate the number of grid lines over 0 < x < 

xe, 0 < y < δsteady(x), and δsteady(x) < y < 1 for the interface location at t = 0. These numbers 

undergo minor changes as one marches forward in time in integer multiples of a time step ∆t. We 
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consider two different sufficiently refined choices of grid, viz. grid-I and grid-II, for computing 

the unsteady results in Fig. 9. For these grids I and II, we have:   ( ) tnnn V|jL|ji ∆×××
Ι

=

( ) 5.2203030 ××× and ( ) tnnn V|jL|ji ∆×××
ΙΙ  

= ( ) 5305050 ××× . For these two refined grids, the 

combined sum of truncation and round off errors are minimized to a plateau level and the 

solutions in Fig. 9 are seen to be grid independent to within 1–2%. For a technical estimate of 

total discretization error – section 3.10 in Ferziger and Peric [37] is used for estimating the error 

on a representative flow variable, say film thickness in Fig. 9. This estimate leads to an 

approximate total error to be within 3%. The error in other converged flow variables for this 

representative flow situation was found to be of the same order of magnitude (within 2-5 %). 

 

Computational Algorithm Outline 

 In the computational approach, at any instance of time t, the liquid domain and the vapor 

domain in Figs. 8a-8b are solved separately after a tentative guess of interfacial location δ. The 

liquid domain is solved subject to stress boundary conditions (namely shear stress τ
i
 and pressure 

p
i 
in Fig. 8a) and the vapor domain is solved subject to the velocity boundary condition (u2

i
 and 

v2
i
 in Fig. 8b). The grid details are given in Liang [38]. The temperature boundary condition at 

the interface viz. values of θ1
i
 and θ2

i
 are determined by the saturation condition in Eq. (9) – 

which, for all current purposes, equal known temperatures θs(0). In this approach, the five 

guesses of {u2
i
, v2

i
, τ1

i
, 

 
p1

i
, δ} are equivalent to the five guesses of {u2

i
, v2

i
, u1s

i
, v1s

i
, δ} where, 

{τ1
i
, 

 
p1

i
} are replaced, in Fig. 8a, by  {u1s

i
, v1s

i
}. The {u1s

i
, v1s

i
} are liquid velocities computed on 

the shifted interface that is approximately one cell above the actual interface and adjusting these 

values are equivalent to making adjustments on the interfacial stresses {τ1
i
, 

 
p1

i
}. These five 
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guesses are iteratively updated with the help of five interfacial conditions, viz. two from 

tangential and normal stress conditions (Eq. (4) and Eq. (5)), two from interface mass balance 

(Eq. (8)), and one from continuity of tangential velocity (Eq. (3)).  

 Since the liquid flow in Fig. 8a is solvable as a “parabolic” problem for a given {δ, τ1
i
, 
 

p1
i
} and the vapor flow in Fig. 8b is solvable as a “parabolic” problem for {δ, u2

i
, v2

i
}, the 

question is what overall boundary conditions for the control volume are needed, or can be 

imposed, to deterministically predict these five variable {δ, τ1
i
, 

 
p1

i
, u2

i
, v2

i
} at all times t > 0 if the 

flow condition at some t = 0 were known. To begin with, we do not assume the structure of the 

governing equations for these complex problems as the physics of the flow suggests that at least, 

for shear driven flows, it is possible that unsteady exit condition imposition of the type given in 

Eq. (15) may be feasible. To investigate this issue, the unsteady annular/stratified problems (for 

gravity and shear driven flows) are solved under “specified” exit conditions in formulation [B]. 

A more detailed algorithm for above prescribed outline is given in the Appendix A-2. 

 

1-D Approach 

The convergence, grid independence, and accuracy of the ODE solver are well known 

and well tested as a Matlab solver (from The MathWorks, Inc., MA) was used. Also, the 

agreements between the 1-D steady solutions and the 2-D steady solutions are shown in Fig. 10a 

and 10b. Fig. 10a is for a gravity driven flow in a vertical channel and Fig. 10b is for a shear 

driven flow in a horizontal/0g channel. Clearly, because of the asymmetry of the channel flow, 

the 1-D solution depends more significantly on the reasonableness of the choice for the vapor 

profile. This is why, in Fig. 10b, the 1-D simulation result is less accurate than the 2-D 

simulation in predicting the film thickness variation. Over the length reported in Fig. 10b, the 
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simulation results for a horizontal channel and 0g channel flows are same except for hydrostatic 

variations in the condensate pressure. However, at large downstream distances accessible by the 

current 1-D approach, we find (see [35]) that the transverse gravity component associated with 

the horizontal channel flows makes the flow quite different than the 0g channel flow. 

 

5. COMPUTATIONAL RESULTS AND DISCUSSIONS 

5.1 Key 1-D/2-D Results on Shear Driven and Gravity Driven Internal Condensing Flows  

Besides the corrected version of the 2-D computations, a recent and independent 1-D 

analysis [35] has established that, in spite of singularity at the entrance (x = 0), these steady 

equations of internal condensing flows have a unique annular steady solution, and that solution 

does not need exit-condition prescription (i.e. parabolic boundary conditions suffice). This is a 

correction on our earlier reported 2-D results. The error in our earlier computational results 

([30]-[34]) suggested that there were multiple steady solutions as multiple steady exit condition 

impositions were possible. The claim of existence of multiple strictly steady solutions was wrong 

because the computations used in that previous analysis did not satisfy one of the steady 

interface conditions accurately. However, new results dealing with quasi-steady solutions that 

are reported in section 5.2 below seem to suggest that the earlier reported multiple steady 

solutions correspond to quasi-steady solution under impositions of quasi-steady exit conditions.  

Fig. 10a (for gravity driven flows) and Fig. 10b (for shear driven flows) compare the 

unique steady solutions of the strictly steady governing equations obtained by the 1-D [35] and 

the 2-D techniques under parabolic boundary conditions for a partially condensing flow inside a 

channel. The 1-D computational results shown in Figs. 11a-11b for in-tube (vertical and 0g 

situations) condensing flows of FC-72 vapor are also representative of in-channel flows and 
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indicate remarkable differences between gravity and shear driven flows with regard to the 

velocity profiles and film thickness. It can be seen from Fig. 11a that, for all else remaining the 

same, shear driven flows have much thicker condensate and, hence, much lower heat transfer 

rates (which is typically inversely proportional to film thickness) and interfacial mass transfer 

rates. The condensate velocity profile for gravity driven flow in Fig. 11a is parabolic in shape 

with nearly zero slope at the interface (the condensate does not need shear for its motion as in the 

Nusselt [6] problem) while the one for the shear driven flow is linear (which provides adequate 

shear for condensate motion).  

For the prescribed temperature (Tw(x) = constant)  thermal boundary condition 

considered here, as shown in Fig. 11b, the pressure variations for gravity driven flows often 

amount to a pressure rise where as a small pressure drop is associated with shear driven 0g flows. 

It should be noted that the actual pressure difference that is realized needs to account for two 

competing effects: (i) a pressure rise needed for decelerating the vapor in order to lose mass to 

the condensate, and (ii) a pressure drop needed to overcome interfacial shear. For the gravity 

driven flow case in Fig. 10a, it is the vapor deceleration effect that dominates and for the shear 

driven case in Fig. 10b, it is the interfacial shear effect that slightly exceeds the deceleration 

effects. For all the steady and the unsteady simulation results reported here, interfacial mass 

transfer rates were very important as the interfacial mass and energy balances played a critical 

role. However, on the right side of the interfacial pressure condition in Eq. (4), surface tension 

effects (because of the straight channel geometry and low curvature waves) and the mass transfer 

rate effects were found to be unimportant – i.e. p1
i
 ≈ p2

i
 was a valid approximation – because the 

sum of these two terms contributed less than 5% to the value of the right side of Eq. (4). As a 

result, the solutions were nearly the same whether or not these terms were retained on the right 
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side. The insignificance of the Marangoni term on the right side of Eq. (5) has already been 

demonstrated in Liang et al. [32]. 

Several steady parabolic governing equations’ solutions were obtained by the 1-D and the 

2-D methods over the following parameter range: 

900 ≤ Rein ≤ 22000 

 0.0036 ≤ Ja/Pr1 ≤ 0.0212 

 3.2E-4 ≤ ρ2/ρ1 ≤ 0.03                                                      (17)                    

0.0113 ≤ µ2/ µ1≤ 0.06 

 57000 ≤ Gp  ≤ 4,840,000.  

where Rein ≡ ρ2UD/µ2, Gp ≡ Fr
-1

x*Rein
2 
≡  ρ2

2
gxDh

3
) / µ2

2
, and Ja/Pr1 ≡ ∆T.k1/hfg.µ1. These results 

have been further synthesized and correlated in [35].  

Based on the recognition of differences between gravity and shear driven flows, and 

computational efficiency of the 1-D tool over the 2-D tool, the 1-D tool has been used to 

demarcate zones (see Fig. 12) which identify gravity driven, shear driven, and the intermediary 

“mixed” driven region of annular/stratified flows in a 3-D parameter space (see [35]) defined by 

{x, Rein, Gp} while the remaining non-dimensional parameters remain fixed. Figure 12 shows, 

for varying values of gravitational acceleration gx (or its non-dimensional value Gp ≡ (ρ2
2
gxDh

3
) 

/ µ2
2
), the resulting division of this parameter space for the in-tube cases (as shown in [35] if 

channel gap h ≈ D then the in-tube results also approximate the channel flow results). This 

parameter space division has been discussed in detail in [35].  
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5.2 Computational Results for Internal Condensing Shear Driven Flows for Different 

Unsteady Elliptic Boundary Condition Impositions 

5.2.1 Ellipticity of the unsteady equations: 

As discussed in section 2, the solutions to the unsteady equations of internal condensing 

shear driven flows are sought to assess the physics of the problem. For the unsteady flow, under 

steady parabolic boundary conditions (of steady inlet mass flow rate, steady condensing surface 

temperature, and steady inlet pressure) and an unsteady exit condition specification of M�� ��
 �t� 
in Eq. (15) as  in Fig. 2a, it is found that there is an unsteady solution whose unsteady film-

thickness response is shown in Fig. 2b. This unsteady exit condition imposition (for steady 

parabolic boundary conditions) was computationally found to be feasible for the shear driven 

case and not feasible for the gravity driven (and dominated) flow cases. For gravity dominated 

flow cases, the film thickness profile, for Tw(x) = constant cases considered in this study, is 

found to be same as in the Nusselt solution [6] regardless of the inlet mass-flow rate. This 

means that the purely elliptic behavior of the unsteady annular/stratified flows as exhibited in 

Figs. 2a-2b is limited to the shear driven zone in the parameter space of Fig. 12 and that the 

unsteady equations are strictly parabolic in the far right gravity dominated zone of Fig. 12. The 

steady and unsteady shear driven flows considered here are for 0g and horizontal channel flows. 

It has been observed that, for the relatively small condenser length involving partially 

condensing flows investigated, the shear driven flows for 0g (i.e. gx = 0 and gy = 0 in Fig. 1) are 

approximately the same as the shear driven horizontal channel flows with transverse gravity 

(i.e. gx = 0 and gy ≠ 0 in Fig. 1). Therefore the computational results shown in this paper for 0g 

are also applicable for partially condensing horizontal channel flows.  However, in a future 
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paper, we show that if the length of the condenser is long and the condensate is sufficiently 

thick, the 0g flows are not the same as the horizontal channel flows (gy ≠ 0). 

Although the unsteady imposition in Fig. 2a alone is reported here, several non-periodic 

finite duration unsteady impositions (not shown) were implemented and they led to accurate 

unsteady solutions in the annular regime.  

It should be further noted that unsteady solutions for the unsteady governing equations 

are possible without specifying the exit conditions (for example, by using parabolic exit 

condition formulation [A] leading to Eq. (14)) provided there are sources of unsteadiness either 

in the parabolic boundary conditions or in the initial conditions (see [30]-[34]). 

5.2.2 Quasi-steady solutions as a result of “ellipticity” of the unsteady equations: 

Figure 3 shows three different time history prescriptions for non-dimensional exit liquid 

mass flow rate M�� ��
 �t� in Eq. (15). The red curve is associated with a constant steady value 

associated with the “natural” steady exit condition i.e. M�� ��
 �t� = M�� ��
|Na ≈ 0.116 found from 

the unique steady solution associated with the steady shear driven parabolic problem considered 

in Fig. 10b. The blue curve is associated with a suitable time-periodic prescription (M�� ��
�t� = 

M�� ��
|on-off) that is obtained by an “on-off” procedure (see Fig. 3 and definitions of time period 

Tp = τc + τr) in which, during the “on” time interval ‘τc,’ the exit condition in Eq. (15) is 

externally imposed whereas during the “off” time interval ‘τr,’ the “natural” exit condition 

through formulation [A] and Eq. (14) is imposed and the solution relaxes towards the “natural” 

solution. These values of τc and τr are so chosen that the resulting exit condition imposition in 

Fig. 3 as well as the associated solution in Fig. 4 are both time-periodic with mean values that 

are steady. The periodic on-off imposition in Fig. 3 (the blue curve) has an “off-natural” mean 
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(M�� ��
|on-off mean ≈ 0.123) above the “natural” value. This shows that the exit liquid mass flow 

rate can, in principle, be controlled such that during the on portion of the control, liquid exit 

mass flow rate is on the higher side of the “natural” and during the off portion of the 

prescription, the flow bounces back (with overshoot) to seek its “natural” exit condition. The 

green curve is an attempt to prescribe a constant steady exit condition (M�� ��
�t� = M�� ��
|constant) 

at an “off-natural” mean (M�� ��
|constant ≈ 0.127). The non-natural constant steady imposition in 

Fig. 3 (green curve) is only representative as many other non-natural constant imposition were 

also tested and they lead to a response similar to the one reported to this curve. Figure 13 shows 

another time-periodic prescription with an “off-natural” mean (dashed curve) that is slightly 

below the “natural” value. Figure 4 and Fig.14 show the respective response of the film 

thickness to the exit liquid mass flow rate prescriptions depicted in Fig. 3 and Fig. 13.  For the 

constant steady prescription with the mean at the self-sought “natural” value of exit liquid mass 

flow rate, film thickness attains a steady value in time - the same (within computational error of 

3%) as the film thickness obtained by solving the steady equations under parabolic boundary 

condition. For the time periodic quasi-steady exit condition prescription of Fig. 3, film thickness 

(shown by the blue curve in Fig.4) keeps on oscillating, for all times t > 0, in a narrow band  

which has a steady mean and thicknesses that are less than the one associated with the “natural” 

steady solutions given by the red curve. This new quasi-steady solution (steady-in-the-mean) 

effectively makes the condensing flow behave as if it has multiple quasi-steady solutions for 

multiple and suitable quasi-steady exit condition impositions. Similar but much smaller impact 

of the exit condition imposition in Fig. 13 leads to the film thickness response in Fig. 14 – 

which exhibits an oscillation in a band (the dashed curves) slightly above the strictly steady 

“natural” solution. Note, for the kind of imposed quasi-steady exit conditions in Fig. 3 and 
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Fig.13 (which has a “non-natural” mean and superposed periodic fluctuations), new quasi-

steady flows are achieved with different steady-in-the-mean values of the exit liquid mass flow 

rate, exit vapor mass flow rate, and the rest of flow variables in the interior of the flow domain. 

As shown in Fig. 15, relative to the strictly steady “natural” flow, the quasi-steady flows show 

significant differences (about 7% for the total heat load) in the heat transfer rates q″w(x) and Nux 

values where  

q″w(x) ≡ hx(∆T) ≈ (k1 ∆T) / (h δ(x)) 

Nux ≡ hx h / k1 ≈ 1 / δ(x)                    (18) 

 Note that for the constant steady prescriptions of “natural” steady exit condition and for 

a time periodic quasi-steady prescription at an “off-natural” mean, the flows continue to remain 

in the annular/stratified flow regime for all times t > 0 (see Figs. 3-4). However, for a constant 

steady “off-natural” prescription given by the green curve in Fig. 3, the flow cannot remain 

steady as the corresponding solution for this exit condition imposition in Fig. 3 is the green 

curve in Fig. 4 - which shows that the solution is not possible after a certain time t* (≈ 1170 in 

Fig. 4). Note that, in Fig. 4, the waves start appearing on the interface (green curve) before the 

annular/stratified solution becomes impossible for t ≥ t*. This is consistent with the result in 

Fig.16a where the “natural” steady solution (red curve in Fig. 4) is found to be stable to small 

initial disturbances and with the result in Fig. 6b where the “non-natural” strictly steady solution 

(the green curve in Fig. 4) is unstable to small initial disturbances and cannot be realized in 

practice. It is possible that the condensers exposed to “non-natural” concurrent prescription of 

steady inlet and exit conditions (as is the case with the red curve in Fig. 4) correspond to 

conditions for which appearance of self-sustained oscillations involving annular and non-

annular regimes are possible. Some of this type of elliptic-sensitive issues may also be useful 
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and relevant for proper understanding of self-sustained oscillations in the condensing flow 

experiments of Wedekind and Bhatt [39]-[42]. 

It should be further noted that even when the film thickness in Fig. 4 significantly 

decreases or film thickness in Fig. 14 slightly increases under quasi-steady imposition of exit 

condition in Fig. 3, the mean pressure increase or decrease at the exit needed to decelerate or 

accelerate the vapor (see Figs. 17a-17b) is small for this partially condensing case. It is clear 

that the type of exit condition imposition in Fig. 13 is difficult and very small mean film 

thickness increases are observed in Fig. 14.  

Because of the computationally intensive nature of finding the right quasi-steady 

imposition (as in Fig. 3 and Fig. 13) and then obtaining the associated quasi-steady solutions (as 

in Fig. 4 and Fig. 14), only a very limited number of other quasi-steady impositions (about 4 

other cases) of this nature have been computationally investigated so far. 

If a larger length condenser was considered with computational ability to simulate non-

annular flows, it is possible that this type of quasi-steady response for “non-natural” quasi-

steady exit condition imposition may also involve flow morphology changes because of a shift 

in flow regime boundaries. This important physics cannot be captured by our current simulation 

tool that can only handle annular/stratified morphology.  

For the impositions in Fig. 3 and Fig. 13, Figs. 18a – 18b respectively show the time 

histories for the non-dimensional values of net mechanical energy input rate W� <
=>�67 (see 

definition in Eq. (A.11) in the Appendix A.3) into the condenser control volume. Fig. 18a shows 

that the mean value of the net mechanical energy for the new quasi-steady solution (blue curve) 

is lower than the “natural” value whereas, in Fig. 18b, it is slightly higher than the natural value. 

Fig. 19 shows how the admissible range of time-averaged values of W� <
=>�67 get affected by 
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the different mean quasi-steady exit-conditions imposition. It is possible that even though 

annular/stratified quasi-steady solutions exist for such on-off prescriptions in the vicinity of the 

“natural” (bounded by the two red lines); the range of available values may be limited for the 

realization of annular/stratified flow regimes. The reduction and increase, with respect to the 

“natural” parabolic value, in these overall time-averaged values are associated, for the 

considered case of constant condensing-surface temperature, with changes in total interface 

energy transfer rate D� @ shown in Fig. 20. The interface energy transfer rate D� @ is defined in 

(A.13) of the Appendix A.3 and is made up of pressure and kinetic energy transfer rates across 

the interface. The fact that D� @ increases on either side of the “natural” exit condition is 

indicative of the energetic resistance at the interface to consume energy at non-natural rates. 

This energy response is limited to the assumed/ considered case of constant condensing surface 

temperature and explains the computationally observed “elasticity” with regard to “non-natural” 

quasi-steady exit condition imposition. By “elasticity,” it is meant that during the “off” portion 

of the elliptic imposition, the quasi steady solutions in Fig. 4 and Fig. 14 tend to bounce back to 

the respective “natural” solutions with an overshoot. 

5.2.3. Continuity of elliptic response with respect to the unsteady “elliptic/non-natural” exit 

condition data   

     The issue that needs understanding is: in what sense the natural constant exit condition 

M�� ��
�t� � M�� ��
|"# (red curve in Fig. 3) is “close” to the time-periodic imposition  M�� ��
�t� �

M�� ��
|A7�ABB C
+6AD6= (blue curve in Fig. 3) such that the resulting solution is close to the natural 

solution (as measuered by the proximity of the mean time-averaged values of the consumed 

mechanical energy ‘W� <
=>�67’ shown in Fig. 19)? The analogous question is in what sense the 

constant steady off-natural prescription M�� ��
�t� � M�� ��
 E  ! M�� ��
|"# (green curve in Fig. 3) is 
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“far” from the natural constant exit condition M�� ��
�t� � M�� ��
|"# (red curve in Fig. 3) such that 

the average of the constantly decreasing values of the consumed mechanical energy ‘W� <
=>�67’ 

as shown in Fig.18a becomes progressively farther from the “natural” value as the time duration 

of observation increases? Based on the above discussed response of the flow to these exit 

condition impositions, it appears that one suitable measure of the “distance” between an arbitary 

imposition M�� ��
�t� and the constant natural control M�� ��
|"# – which is the same as the 

magnitude or “norm” of the difference function M�� ��
|F6BB�t� � �M�� ��
�t� * M�� ��
|"# � – can be 

defined as: 

dist �M�� ��
�t�,M�� ��
|"# �  �  IM�� ��
|F6BB�t�I 

� J� KM�� ��
�t� * M�� ��
|"#L dt(E M0
(E J N   O� P D<�� QRS�(�

D ( * 0T(EM0
(E dtO, 

                   �  J� KM�� ��
|F6BB�t�L dt(E M0
(E J N   O� P D<�� QRS|UVWW�(�

D ( T(EM0
(E dtO,                           (19)  

where 0 ≤ t* ≤ t ≤ t* + T is time interval of interest. For the constant steady off-natural or non-

periodic exit condition impositions, the time period of interest is typically one in which t* = 0 

and T is sufficiently large. However, for time-periodic prescription with time period Tp, it is 

found that the resulting solution is (see Figs. 3 and 4) eventually (after some time t > t* > 0) also 

time periodic with the same time period Tp. Therefore, it is clear that the time duration of interest 

in  Eq. (19) for the quasi-steady  case should be the finite time duration [t*, t*+Tp] associated 

with the largest period Tp. With this understanding, the following can be concluded for different 

exit condition spedifications: 

dist �M�� ��
|"#, M�� ��
|"# � X 0 

                                 dist �M�� ��
 E,M�� ��
|"# � X  J�M�� ��
 E * M�� ��
|"# �J E T                             (20) 



37 

 

dist �M�� ��
|A7�ABB C
+6AD6=, M�� ��
|"# � X  J�M�� ��
|A7�ABB C
+6AD6=|Y
#7 * M�� ��
|"# �J E TC .               

  In Eq. (20) above M�� ��
|A7�ABB C
+6AD6=|Y
#7 refers to the time-averaged mean over the 

period TP and T refers to an sufficiently long time interval. Since T is typically large and time 

period Tp is finite in Eq. (20), it is seen from the second equality of Eq. (20) that the “off-natural” 

constant steady specification is “far” (the distance value is large) from the natural control 

whereas the “periodic” specification is “close” to the “natural” prescription since the distance 

value is small provided the mean of the periodic specification (purple curve in Fig. 3) is close to 

the M�� ��
|"# (red curve in Fig. 3). 

Thus, the fact that there exist “quasi-steady” solutions near the “natural” steady solution 

for the exit condition impositions that are “close” (in the sense of Eq. (20) above and in terms of 

nearby energy consumption rates in Fig. 19) to the “natural” exit condition is merely a statement 

that the “elliptic” problem for the unsteady shear driven flow is “well-posed” and exhibits 

continuity with respect to exit condition boundary data (i.e., the data on the right side of Eq. 

(14)). By continuity with respect to exit condition data one means that small changes in the data 

(in the sense of Eq. (19)), cause small changes in the solution. 

5.3 Summarized Computaional Results 

 As discussed earlier, the flow parameters shift the flow in Fig. 12 from a shear driven 

regime to a gravity dominated regime (see [35]), the unsteady governing equations’ character 

shifts gradually from one of “elliptic behavior” in the shear driven region of Fig. 12 to the purely 

“parabolic” behavior in the gravity dominated zone of Fig. 12. The associated steady equations 

always remain “parabolic” – though the strength of the “parabolic” attractor (see definition in 

[14]) changes. In other words, we are saying that the traditional characterization of governing 
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equations being parabolic, elliptic, or hyperbolic for the entire parameter space of any linear or a 

non-linear problem does not hold for characterizing the behavior of these complex phase-change 

flow problems. Instead, it is proposed that the steady and unsteady equations for internal 

condensing flows should not be characterized in the traditional way. Rather, it should be 

understood that the character of these equations change gradually –as marked in Fig. 12 - as we 

move in the parameter space and the flow undergoes transition between pure shear (0g) and 

gravity dominated (Nusselt) catagories discussed in the earlier sections. This nuance in 

understanding the character of the internal condensing flow equations is new for condensing 

flows but is not new in fluid dynamics. For example, the gas dynamics Tricomi equation (see 

chapter 26 of [43]) undergoes a change in character from “elliptic” to “hyperbolic” as one moves 

in the parameter space of Mach number (Ma) from the sub-sonic regime (Ma < 1) to the super-

sonic regime (Ma > 1).  

 

6. EXPERIMENTAL INVESTIGATION OF A SHEAR DRIVEN FLOW AND ITS 

QUALITATIVE COMPARISONS WITH THE COMPUTATIONAL 

PROBLEM/RESULTS 

6.1 Physical Arrangement of the Experimental System   

To study the experimental verification of the computational results regarding 

unsteady/quasi-steady condensing flows’ “ellipticity,” the 2-D flow in Fig. 1 is approximated by 

the 3-D situation of Fig. 5. This involves fully condensing flows of FC-72 vapor in a  rectangular 

cross-section (2 mm gap height and 15 mm wide) duct of 1m length. Its horizontal condensing 

surface area (15 mm x 1 m) is the top of a 12.7 mm thick stainless plate. The channel’s top and 

side surfaces are made of a thick transparent material (lexan), which is covered with an 
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insulation that can be removed to allow flow visualization. The test-section shown in Fig. 5 is 

used in the flow loop facility depicted in Fig. 21. For the fully condensing flow results reported 

here, the test-section is horizontal and the auxiliary condenser section of the flow loop in Fig. 21 

is not used as the valve V is closed. Furthermore, the controllable displacement pump P2 is also 

not used. 

The condensing surface’s “cooling approach” (which defines its thermal boundary condition) 

consists of:  

(i) Coolant water flows under the thick condensing plate at a controlled steady flow rate and 

a nearly uniform temperature Tres. 

(ii) A thermo-electric cooler underneath the heat-flux meter (HFX-1 on top of a thermo-

electric cooler TEC-1 in Fig. 4) cools the condensing-surface approximately over 50 cm 

≤ x ≤ 60 cm in a fashion that keeps the mean surface temperature fixed at an average and 

approximate constant value. This is done with the help of feedback control of TEC-1 

through a thermocouple which holds the local temperature at x = 58.5 cm fixed. 

(iii) A thermo-electric cooler (TEC-2 in Fig. 13) underneath the condensing surface cools an 

approximate region of 80 cm ≤ x ≤ 1 m. The thermo-electric cooler TEC2 is operated at a 

fixed maximum driving voltage (17.5 Volt). The thermo-electric cooler lowers the 

condensing surface temperature (for the reported full condensation cases) past the onset 

of bubbly regime – thereby ensuring that the subsequent flow morphology changes 

rapidly to an all liquid flow over this zone. 

 

The above described “cooling approach” defines the following thermal boundary 

condition for the condensing surface: 
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(a) At all locations other than the ones associated with HFX-1/ TEC-1 and TEC-2 in 

Fig. 5, let R″slab and R″conv denote the respective thermal resistances – on per unit area 

basis – that model steady or quasi-steady heat flow through the slab and the water flow 

(at temp Tres). Furthermore, if hext is given by 1 / hext ≡ R″slab + R″conv, then the thermal 

boundary condition at these “x” locations are of the convection type (Eq. (12)) and is 

given by (for R″slab << R″conv): 

*k�  /01
/2 |25� X h
'()T��x, 0, t� * T+
,-,            (21) 

where 0 ≤ x ≤ 50 cm or 60 cm ≤ x ≤ 80 cm. For non-negligible R″slab, the model above is 

best replaced by a conjugate analysis which correctly models the thermal inertia (effects 

of specific heat and the volume of the slab) issues for the transient heat flow through the 

slab.  

(b) At the thermo-electric cooler TEC-1 and heat flux meter HFX-1 location, a nearly 

steady temperature  boundary condition of: 

 T��x, 0, t� ≈ 58.5 °C     for 50 cm ≤ x ≤ 60 cm                                (22) 

 can be assumed since the surface temperature variation in this region was measured to be 

small.  

(c) If one respectively denotes the bottom and top temperatures of the thermo-electric 

cooler (TEC-2 in Fig. 5 and Fig. 7) by Tbot and Ttop, and the area-averaged heat flux by 

Z ″, then the constant voltage operation of TEC-2 defines a known function [\]^_  such that 

∆TTEC ≡ Tbot  - Ttop = [\]^_�Z %%�.    (23) 

This non-linear function [\]^_  is experimentally known and follows the trends implied by 

the manufacturer’s specification ([44]). If the per unit area thermal resistance between the top of 
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the TEC-2 and the condensing-surface is denoted by R″top, and the thermal resistance between 

the bottom of TEC-2 and water flow is denoted by R″bot; then the thermal boundary condition 

over the TEC-2, under quasi-steady conditions, is well approximated by: 

)T��x, 0, t� * T+
,- X  q a� RacA(  N  Ra(AC	 * f\0ef�q a�     (24) 

 for 80 cm ≤ x ≤ 1m, where q ″ ≡ *k�  /01
/2 |25�  is evaluated at a suitable x-location. For truly 

unsteady conditions and non-negligible conductive thermal resistance contributions to R″top and 

R″bot, the model above is best replaced by a conjugate analysis which correctly models the 

thermal inertia (effects of specific heat and the volume of the slab) issues for the transient 

conduction heat flow. 

Although, both computations and experiments deal with purely shear driven horizontal 

channel flows, the condensing surface thermal boundary condition for the experiments – as given 

by Eqs. (21) – (24) above – are not the same as the one assumed for the theory (i.e. T��x, 0, t� X
Tg �x� X constant). The computational simulations for the above experimental thermal 

boundary condition and the results’ comparisons with experiments are part of a forthcoming 

paper.  

6.2 Experimental Procedure and Observations 

6.2.1 Procedure and observations for the first quasi-steady realization (for t ≤ t0) in Figs. 6a – 6c 

For the reported cases, the valve V in Fig. 21 is closed and the pump P2 in Fig. 21 is 

removed and eventually attained steady operating values of M� 67, pin, and Tg�x�|� are such that 

the point of full condensation is within the test-section and the “Collection Chamber” in Fig. 21 

is filled with liquid. This procedure involves: (i) removing the compressor from the flow loop by 
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keeping the compressor running at a very low speed with the bypass valve (VBP in Fig. 21) fully 

open,  (ii) holding fixed the Coriolis mass flow meter FC (in Fig. 21) reading of the mass flow 

rate M� 67 by a PID control of the evaporator heater, (iii) fixing the evaporator bath temperature 

Tbath, (iv) steadying condensing surface temperature TW (x) through a control that achieves a 

steady  coolant flow rate for the water that flows underneath the condensing surface and 

maintains a nearly uniform temperature, and (v) using the controllable displacement pump P1, 

through a PID control, to hold the exit pressure fixed at pexit = pexit*. This procedure allows the 

inlet pressure pin to freely seek its natural steady value pin|Na.  

As depicted in Fig. 3, it is found that the morphology of the fully condensing flow cases 

(depending on M� 67 and ∆T values) were found to vary from: (i) cases where the flows are 

annular/stratified almost up to the point of full condensation (and only a small amount of 

“plug/slug” flows are seen near the point of full condensation) to (ii) cases where the flows are 

significantly non-annular over approximately half of the test-section. 

It was experimentally observed that even though fully condensing flows exhibit different 

flow regimes (annular, non-annular, plug-slug, bubbly, etc.) inside the test section, the observed 

transition locations (schematically shown in Fig. 5) by xPlug/Slug, xBubbly,  etc. were experimentally 

found to be robust and repeatable. Along with this, the mean measured values of flow variables 

in Figs. 4 – 5 were also found to be repeatable for t ≤ t0. In Figs. 4-5, the mean values of  M� 67, 

pin, pexit*, ∆p, etc. are accurate to within 5%, the temperatures are accurate to within ± 1
o
C,  but 

the absolute values of the mean heat-flux q�|89:��%%  is not representative (because the heat flux-

meter was not calibrated)  - though the relative magnitude of changes in q�|89:��%%  (i.e. 

∆q�|89:��%% q�|89:��%%l ) are representative and correct to within 5%. Therefore the results reliably 

tell us that one can achieve repeatable and stable “natural” fully condensing flows if the flow 
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loop is designed in a way that all the “parabolic” boundary condition impositions are well 

controlled and repeatable and, additionally, if the flow loops design allows the flow to seek its 

own pressure condition at the inlet (pin|Na).  

However, as discussed next, when an unsteady “elliptic” boundary condition is imposed 

for shear driven flows, not only do the flow regime transition boundary locations (marked 

xPlug/Slug, xBubbly,  etc. in the schematic of Fig. 5) change in time but, also, the mean values of the 

flow variables changes in time. 

6.2.2 Procedure for imposition of an unsteady/quasi-steady “elliptic” pressure boundary 

condition at the inlet 

To begin with, the quasi-steady flow was “natural” for t ≤ t0 with the inlet mass flow rate 

M� 67, natural inlet pressure pin|Na-1, fixed exit pressure pexit
*
 , natural pressure difference ∆p, and 

the heat flux q�|89:��%%  values were as shown in  Figs 6a-b. The steady condensing - surface 

temperature variation TW(x)-1 was as in Fig. 7.  

           The subsequent (t ≥ t0) imposition of unsteady “elliptic” boundary condition procedure 

involves: 

Use the flow controls to continue to hold fixed the earlier (for t ≤ t0) values of mean exit 

pressure pexit
*
, inlet mass flow rate  M� 67, bath temperature Tbath (to stabilize boiler pressure 

variations during compressor aided imposition of inlet pressure), the coolant flow rate, and the 

coolant temperature for t ≥ t0 while increasing the inlet pressure pin(t) in time (over t0 ≤ t ≤ t0 + 

10) with the help of the compressor by increasing the speed of the compressor and partly  closing 

the bypass valve (VBP  in Fig. 21) to a new value pin|2 > pin-1. Because the steady cooling 

approach in the experiments allows time variations in the values of condensing surface 

temperature TW(x), it is found that this unsteady “elliptic” imposition causes the shear driven 
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flow to respond unsteadily – exhibiting thermal transients (see Fig. 6c) before a final quasi-

steady state is reached at t > t0 + 65. This final steady state is another “quasi-steady parabolic” 

state associated with the new condensing surface temperature distribution Tw(x)-2 in Fig. 7.  

These results in Figs. 6-7 show that the mean inlet pressure has been successfully 

increased with the help of the compressor induced fluctuations while the exit pressure has 

remained constant. Concurrent to this imposition, at the end of the 10 minutes long 

hydrodynamic transient (during which the unsteady imposition occurs), the pressure-difference 

∆p between the inlet and the exit increases and, as in the computational results, the mean film 

thickness of the wavy interface decreases in the annular/stratified region and this leads to 

significantly enhanced heat-transfer rates (see representative q′′|HFX-1 values in Fig. 6b). It should 

be noted that the significant enhancement in heat-transfer rate is there because an increase in ∆p 

by 60 Pa is quite significant compared to the original pressure difference (about 275 Pa) for the 

annular stratified portion of the flow (see Fig. 6b). 

 

6.2.3 The role of fluctuations in the experimentally observed elliptic sensitivity 

 This imposition of non-natural quasi-steady inlet pressure pin|2 and associated heat-

transfer enhancements (which may yield a total heat transfer rate significantly above M� in|mean·hfg 

due to energy contained within the inlet vapor fluctuations being absorbed by the interface) are 

accompanied/enabled by the time-periodic fluctuations (which have been observed and are to be 

measured in the forthcoming experiments) p′in(t)  in the inlet pressure and M� '�t� in the inlet mass 

flow rate.  This makes the total inlet pressure pin(t) = pin-2 + p′in(t) and total mass flow rate 

M� in�t�X M� in|meanNM� '�t�). For the fluctuations accompanying the mean inlet pressure, the 

compressor provides a significant additional flow work “M� 'p'      ρ2l NM� in|mean·�pin|2-pin|Na� ρ2l ” 
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and an additional inlet enthalpy flux “M� 'p'      �1 ρ2l N3dug dp⁄ xp0�” - where ug(p) is the specific 

internal energy of the gas phase at saturation temperature Tsat(p). Since, eventually, the mean 

inlet pressure is what is experimentally imposed at a non-natural quasi-steady value, the inlet 

fluctuations that enabled the requisite changes in the mean value of the flow variables were self-

selected by the flow so as to yield the requisite non-zero values for M� 'p'        (≡ K� M� 'p' · dtT
� L T⁄ , 

where T is much larger than the largest time-period) that appeared in the above described energy 

considerations. Because the thermal transients accompany the hydrodynamic transients (see Fig. 

6c), the heat-transfer enhancements gradually become permanent as the new steady temperatures 

Tw(x)|2  are reached. Unlike the computational cases where Tw(x) was constant, the new quasi-

steady flow at t > t0 + 65 is another parabolic flow and it does not have the feature of elastic 

bounce-back between the two quasi-steady states – one associated with t ≤ t0 and the other with t 

> t0 + 65. These two states can only be interchanged gradually with the help of thermal 

transients. 

7. CONCLUSIONS 

1. Simulation results show that there exists a unique steady “natural” solution of the strictly 

steady parabolic problem for the gravity and shear driven condensing flows. This result has been 

verified by two independent solution techniques namely 1-D and 2-D technique. This result has 

also been verified in the reported experiments. It is computationally shown that shear driven 

internal condensing flows are stable as long as the flow is free to self-select its exit condition.  

2. Both 1-D and 2-D simulation results show remarkable and understandable differences 

between gravity driven and shear driven steady condensing flows. 
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3. 2-D computational results show that there could be multiple quasi-steady/unsteady solutions 

of the unsteady governing equations (which exhibit “elliptic sensitivity”) for shear driven cases 

under different quasi-steady impositions of the elliptic boundary condition. This paper presents 

novel categorization of internal condensing flow behavior  based on its elliptic sensitivity. It is 

shown that steady governing equations of shear driven internal condensing flow are  “parabolic” 

while the unsteady equations are “elliptic.” However, it is also found that the unsteady behavior 

remains “parabolic” (even under quasi-steady/unsteady fluctuations on the parabolic boundary 

conditions) for: (i) gravity dominated flows, and (ii) thermal boundary conditions which hold the 

wall heat-flux profile fixed.  

4. The results presented in this paper suggest that one of the ways to realize repeatable partially 

or fully condensing shear driven flows is to use “elliptic sensitivity” to control the flows in a way 

that ensure desired repeatability of the condenser’s performance.  

5. Computational and experimental results presented in this paper show that shear driven 

internal condensing flows are sensitive to the nature of fluctuations present at the inlet/outlet 

boundaries and, in addition, the condenser response also depends on the method of cooling used.  
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NOMENCLATURE 

Cp1 Specific heat of the liquid condensate, J/(kg-K) 

D Inner diameter of tubular test-section, m 



47 

 

Frx Froude number U
2
/gxLc 

Fry Froude number U
2
/gyLc 

H Channel gap, m 

Ja Condensate liquid Jakob number, Cp1· T∆ / hfg(pin) 

k1 Conductivity of condensate liquid, W/(m-K) 

L Length of the test-section, m 

LC Characteristic length, LC = D (diameter) for tubes and LC = h (gap height) for 

channels, m 

inM�  Vapor flow rate at test-section inlet, g/s or kg/s 

L eM̂ (t)−

�

 
Non-dimensional liquid mass flow rate at exit 

V eM̂ (t)−

�

 
Non-dimensional vapor mass flow rate at exit 

LM�  Liquid flow rate at test-section exit, g/s or kg/s 

pin Pressure at the test-section inlet, kPa 

pexit Pressure at the test-section exit, kPa 

Pr1 Condensate liquid Prandtl number, µ·Cp1 / k1 

pxP-i Test-section pressures at locations xP = xP-i (i = 1, 2, …), kPa 

totalQ�  Net heat rate out of the test-section, W 

Rein Inlet vapor Reynolds number, ρ2ULc/µ2 

t Non-dimensional time 

t Physical time, s 

θ Non-dimensional temperature 

Tsat(p) Saturation temperature at pressure p, 
o
C 

wT  Mean condensing surface temperature, 
o
C 

Tw(xP) Non-uniform steady condensing surface temperature at xP, 
o
C 

U Average inlet vapor velocity in the x-direction, m/s 

uf Non-dimensional interfacial velocity in the x-direction 
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uI Physical velocity in the x-direction, m/s 

vI Physical velocity in the y-direction, m/s 

v Non-dimensional velocity in the y-direction 

Mech inW −
�  Non-dimensional mechanical energy input rate in to the control volume of the 

condenser. 

x, y Physical distances along and perpendicular to the condensing surface, m 

x, y Non-dimensional distances along and perpendicular to the condensing surface 

T∆  Tsat(p) - wT , 
o
C 

∆p pin – pexit, kPa 

∆ Physical value of condensate thickness, m 

δ Non-dimensional value of condensate thickness 

ρ2 Density of vapor, kg/m
3
 

ρ1 Density of liquid, kg/m
3

 

µ2 Viscosity of vapor, kg/(m-s) 

µ1 Viscosity of liquid, kg/(m-s) 

πe Non-dimensional exit pressure 

ζ Non-dimensional pressure gradient dπ/dx 

ΦL Viscous dissipation rate for the liquid domain 

ΦV Viscous dissipation rate for the vapor domain 

 

Subscripts 

comp Obtained from computations 

E Test-section exit 

Expt Obtained from experiments 

I I = 1 for liquid and I = 2 for vapor 
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In Test-section inlet 

Na Natural exit condition 
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9. APPENDIX 

APPENDIX A.1 

The interface conditions that apply at ( ) ∆( ) 0φ = − =x, y,t y x , t , involve values of flow 

variables at the interface that are denoted by a superscript ‘i’. The unit normal at any point on the 

interface, directed from the liquid towards the vapor, is denoted by n̂  and is equal to φ φ/∇ ∇ .  

The unit tangent at any point on the interface, directed towards increasing x, is denoted by t̂ .  

Each phase is modeled as a viscous and incompressible Newtonian fluid with stress tensor 

IIp S1T +−=  where 2/})grad()grad{(µ I

T

III vvS ⋅+⋅=  and 1 is the identity tensor. 

• The surface velocity vs of a point on the interface ( 0φ = ) at time t is associated with this 

point’s movement to a new mapped position on the interface at time t + ∆t.  All such mappings 

must be such that the normal component of this vs is given by: 

                                                          s ˆ ( / /  .φ φt)⋅ = − ∂ ∂ ∇nv                                      (A.1) 
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• The tangential component of the vapor and liquid velocities at the interface must be continuous, 

i.e. 

 . ˆˆ i
2

i

1 tvtv •=•                                                        (A.2) 

• Allowing for variations in surface tension  σ over the interface such that the vector  σ∇s  is in 

the tangent plane and ignoring the normal component of viscous stresses in comparison to 

interfacial pressures, the normal component of momentum balance at a point on the interface is 

given by: 

                            

i i 2 i i
s s 1 21 2 2 1

2/3i 2 2
 .

2 2 1

ˆ ˆ ˆ ˆ(1/ 1/ ) σ σ ( )p p ρ ρ

(1 / 1/ ) (σ ) /p ρ ρ [1 ]

= + − + • − • + − •∇ ∇

≅ + − − +∆ ∆

n n n nS S�

� xx x

m

m                            

                                                                                                                 

(A.3) 

The symbols for the vector σ∇s and the curvature n̂s •∇  in the first equality of the above 

equation respectively denote surface-gradient operator and surface-divergence operator and their 

meanings are well defined in suitable differential geometry textbooks (see, e.g., Weatherburn 

[45]). 

• The tangential component of momentum balance at any point on the interface, which allows for 

surface variations in the surface tension σ, reduces to: 

                    .ttnStnS
i
2

i
1

ˆˆˆˆˆ s •σ∇+•=•                                         (A.4)  

• The mass-fluxes m� KV and m� KL  as determined by the kinematic restrictions imposed by 

interfacial values of vapor and liquid velocities are: 

                                  i
VK 2 s2

ˆ( )ρm ≡ − − •nv v�  and  i
LK 1 s1

ˆ( )  .ρm ≡ − − •nv v�                                     (A.5) 



55 

 

• The energy balance at a point on the interface, with energy fluxes being relative to the 

interface, imposes a restriction on the interfacial mass flux m� Energy , and this restriction is given  

by:       

i i

i i

2 2
i i

1 2 2E nergy 1 1 s 2 s

fg s

i i i i
1 1 s 2 2 s

1 2
1 2

fg

1 d 1
ˆ ˆ[{ } { }Tk k T

dt 2h

ˆ ˆ{ ( ) ( )}]

1 T T
[ ] .k k

n nh

• •

• •

= − ∇ + + − − −∇

+ − − −

∂ ∂
≅ −

∂ ∂

n n v v

n nS v S v

��
σ

mm v v

v v

                                                    

                                                                                                                                       (A.6) 

In deriving the first equality in Eq. (A.6) above, the equality of surface energy per unit area to 

surface tension force per unit length is assumed as per usual assumption regarding equilibrium 

interfacial thermodynamics. The symbol 
dt

d

s

σ
denotes rate of change of surface energy per unit 

area per unit time and equals s s
t

σ
σ•

∂
+ ∇

∂
v . This term along with interfacial kinetic energy 

exchanges and exchanges associated with the workings of the normal components of the viscous 

stresses are considered negligible to the net interfacial heat transfer. 

• Mass Balance at any point on the interface requires a single-valued interfacial mass-flux.  That 

is: 

                   
. EnergyVKLK mmmm ���� ≡==                                                   (A.7)        

 • To account for the non-equilibrium thermodynamic effects of non-zero interfacial mass flux 

m� , the interfacial pressures 
i

1p  and 
i

2p  along with their difference 
i i i

1 2∆p p p≡ −  that appear in 
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Eq. (A.3) are additionally considered to be controlled by non-equilibrium thermodynamics and 

are thought as i i i

1 1  n-eq 1p p (T )≡  and i i i

2 2  n-eq 2p p (T )≡ , where 
i
1T  is the liquid side interfacial 

temperature and 
i
2T  is the vapor side interfacial temperature and 

1  n-eqp  (or 
2  n-eqp ) are non- 

equilibrium pressures to be obtained from suitable non-equilibrium thermodynamics equations.  

In the limit of zero mass flux m� , these non equilibrium thermodynamic pressures ( 
1  n-eqp  and 

2  n-eqp ) reach their equilibrium thermodynamic values and are denoted as 
i i

1 sat 1p p (T )≡ and

i i

2 sat 2p p (T )≡ , where psat is the inverse function of the saturation temperature s( )T p . Here, the 

non-equilibrium and equilibrium values of the interfacial pressure differences are denoted as (

i∆p )n-eq and (
i∆p )sat. To allow for a temperature discontinuity (i.e. interfacial thermal resistance) 

across the interface, one must also set (
i∆p )n-eq equal to 

i i i

1 2∆p p p≡ −  as obtained from Eq. (A.3), 

and, in addition,  one must provide an explicit or implicit model for a function f of the type  (
i∆p

)n-eq = f{(
i∆p )sat, m� }, where f allows the two pressure differences to become the same for zero 

mass flux m� . It is common to model f by considerations that involve kinetic theory of gas for the 

vapor phase (see, e.g., section 4.5 of Carey [1], Plesset and Prosperetti [46], etc.). At all points 

away from x ~ 0, the assumption that use of either i

n-eq(∆p )  or (
i∆p ) sat as 

i∆p in Eq. (A.3) do not 

insignificantly affect the near zero value of 
i ii i

s s2 2
∆T T ( ∆p ) T ( )p p≡ + −  is well known and well 

justified in the present context where interfacial thermal resistances are overshadowed by 

significantly larger thermal resistance of the thin condensate. Furthermore, the computations in 

this paper also show: (i) that the solution further downstream is not affected by the nature of the 

singular solution at x ~ 0 (where non-equilibrium thermodynamics is important), and, (ii) that the 

computed downstream values of 
i ii i

s s2 2
∆T T ( ∆p ) T ( )p p≡ + −  , where 

i∆p  values are obtained 
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from Eq. (A.3, satisfy i∆T 0≅  in the sense that i∆T ∆T<< , where ∆T is the number defined for 

Eq. (1). Therefore, under negligible interfacial resistance approximation, the interfacial 

temperature values satisfy: 

                       
ii i

1 2 s 2
( ) .pT T T≅ =

                    

                                                                                                                                                   
(A.8) 

• The term [t] on the right side of Eq. (5) is given by:
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(A.9) 

 

 

APPENDIX A.2                                      

Summary of the algorithm used for the 2-D computational approach to solve unsteady/steady 

internal condensing flow  problem :                                                                                                                             

1. At discrete number of spatial locations, following variables are guessed: δ, u1s
i
, v1s

i
, θ1s

i
, u2

i
, 

v2
i
, θ2

i
. These seven guess functions are adjusted with the help of the seven interface 

conditions and exit conditions (if imposed). The following steps implement the separate 

single-phase (liquid and vapor domain) calculations approach outlined in section 4 (see Figs. 

8a-8b) for a “sharp interface” model.  

2. After fixing {u1s
i
, v2s

i
, θ1s

i
} on a slightly shifted interface (see Fig. 8a), liquid domain is 

solved under the shifted interface by a finite-volume (SIMPLER as in [36]) method. The 

{u1s
i
, v1s

i
, θ1s

i
} are adjusted to satisfy tangential stress (Eq. (5)), normal stress (Eq. (4)), and 

saturation temperature (Eq. (9)) conditions at the interface respectively. Alternatively, a finite 
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volume method and other ways to directly specify the stress boundary condition (Eqs. (A.3)-

(A.4)) for (τ1
i
, p1

i
) on the interface itself is also possible. If it is an unspecified exit condition 

case, exit condition given by formulation [A] (see Eq. (14)) is used. If it is a specified exit 

condition case formulation [B] (see Eq. (15)) is used. For the specified case in Eq. (15), after 

using an initial guess of u1
i  

=
  
u1

i
 |guess and a desired imposition function on the right side of 

Eq. (15) (this function agrees with the exit mass flow rate values for the unspecified case for t 

< t*), the tentative value of the specified imposition at t = t* + ∆t is imposed by changing the 

guess for  u1
i  

=
  
u1

i
 |guess for  t = t* + ∆t as: u1

i
 |guess = β•u1

i
 |current with β found so as to equate 

the left and right side of Eq. (15). Based on these modified values of u1
i
, u1s

i
 values are 

adjusted to satisfy tangential stress condition. Finally, in this computational approach, it is 

the converged value of β at t = t* + ∆t as obtained at the end of iterative completion of all the 

steps (steps 1 -5) for this time (t = t* + ∆t) that determines the right side of Eq. (15) and, 

hence, the actual value of the imposed exit liquid mass flow rate. The value of imposed exit 

liquid mass flow rate is usually in the neighborhood of the original choice for the value of the 

function on the right side of Eq. (15). Clearly, other superior algorithms for imposing the exit 

condition on the right side of Eq. (15) are possible. 

3. After fixing {u2
i
, v2

i
, θ2

i
} on interface δ (see Fig. 8b), the vapor domain above the interface is 

solved by the same finite-volume method (SIMPLER). The guesses for u2
i
, v2

i
, and θ2

i
 are 

updated with the help of: continuity of tangential velocity (Eq. (3)), interfacial mass flux 

equality  EnergyVK mm �� = , and saturation temperature (Eq. (9)) conditions at the interface 

respectively.  

4. The interface location is updated (by tracking the interface) on an adaptive Eulerian Grid 

which remains fixed over a time interval [t, t + ∆t] of interest. This is done by numerically 
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solving the following equation obtained through the remaining interface condition, namely: 

EnergyLK mm �� =  

 

 

(A.10) 

  The numerical solution of Eq. (A.10) (see Liang [38]) yields a converged value of δ (x, t+∆t) on 

the fixed Eulerian grid. These values are then used to obtain the δ (x, t+∆t) values on the fixed 

(for all t) CFD grid being used for the liquid and vapor CFD calculations. 

5. Next the newly obtained liquid and vapor domains for time t + ∆t under the new 

interface locations define a change of the domains in Fig. 1 (i.e., Lt → Lt+∆t and Vt → Vt+∆t). A 

simple mapping technique is used to map the computed values of the flow variables (velocity, 

pressure, etc.) to the newly updated extents for the vapor and liquid domains. 

  The above steps 1-5 are repeated in such a way that all the interface conditions, 

differential equations, etc. are satisfied (and, for the specified exit condition case, the specified 

exit flow rate is consistent with the converged values of β at all times t). It should be noted that 

while solving strictly steady governing equations, the same algorithm is followed but all the time 

dependencies are made equal to zero and, also, no exit condition is (or can be) prescribed as 

steady equations are essentially parabolic in nature.  

anysteady

δ δu(x,t) v(x,t)
t x

δ(0,t) 0

δ(x,0) δ (x)   or   δ (x) 

∂ ∂+ =
∂ ∂

=

=
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APPENDIX A.3 

Net mechanical energy y�
Mech-in consumed by the condenser control volume 

Net rate of mechanical energy going in to the control volume y�
Mech-in is obtained from the 

integral form of mechanical energy equation (see [47]) for individual liquid and vapor domains 

and then adding them together. For any fixed control-volume “Cvf–total” (element volume ‘dv’) 

that represents the condenser and encloses separate liquid and vapor domains of the type shown 

in Figs. 8a-8b, if one denotes the bounding surface of the control volume by “Csf-total,” 

(element area ‘da’) and unit normal on the bounding surface by n, then the expression for y�
Mech-

in is defined as: 

                

2

Mech-in

Csf-total Csf-total Cvf-total

W p ( ) d (1 / 2) ( ) d { dn v v n v v}rel a aρ ρ v= − ⋅ + − ⋅ + ⋅∫ ∫ ∫� gggg

                
(A.11)

 

where prel ≡ p – p0 are the relative values of the absolute pressures pI (I = 1 or 2) with respect to 

the reference inlet pressure p0 , and v is the velocity – these take their appropriate values in each 

of the two phases (I = 1 and 2). 

The above expression for the net mechanical energy into the control volume is also obtained 

from the differential form of mechanical energy equation (see Eq. (5.4-13) in Whitaker [47]) 

integral over individual liquid (L) and vapor (V) volumes and then adding them together. This 

analysis relates Mech-inW�  to total viscous dissipations within each of the two domains (ΦL> 0 for the 

liquid and ΦV > 0 for the vapor) and the net mechanical energy consumed ΣD�  across the 

interface as: 

                             
Mech-in L V

W DΣ= Φ + Φ +� �

                                                 
(A.12) 
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where we have,   

2 2

2 1

2 1

D p d 0.5 di iv vrel

m m
m a

ρ ρ
aΣ

∑ ∑

   ≡ − + −     
∫ ∫
� �

� �

   
 

ΦL≡ � z 
L 1 {[{v1] + [{v1

T
]}:[{v1]dv

    (A.13)

 

ΦV≡ � z 
V 2 {[{v2] + [{v2

T
]}:[{v2]dv 
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FIGURE CAPTIONS: 

Fig. 1: A schematic describing a representative condensing flow problem in a horizontal 

channel. 

Fig. 2a: For the shear driven (0g) flow of R-113 vapor with inlet vapor speed equal to 0.6 

m/s and ∆T = 5 °C, and h = 0.004 m, the figure shows a finite duration non-dimensional exit 

liquid mass flow rate prescription history M�� ��
�t�. 

Fig. 2b: For the flow conditions and non-dimensional exit liquid mass flow rate 

prescription history given in Fig. 2a, the figure shows the film thickness profile δδδδ(x, t) as a 

function of x at non-dimensional times t = t′, t = t′ + 5 and t = t′ + 14 marked in Fig. 2a.  

Fig. 3: For zero gravity condensing flow in Fig. 1 has an inlet vapor speed of 0.6 m/s,  and 

vapor-to-wall temperature difference of 5ºC. This figure shows three different time 

histories of “specified” exit liquid flow mass rates. The vapor is R-113 and the channel gap 

height is 0.004 m. 

Fig. 4: For the flow conditions and exit liquid mass flow-rate prescription shown in Fig. 3, 

this figure shows the response of film thickness values δδδδ(x, t) versus x with t as a parameter.  

Fig. 5: A schematic showing the horizontal test-section and a particular realization of a 

fully condensing shear driven flow inside the test section (with different flow regimes 

marked by their boundary locations). 

Fig. 6a: This figure shows time histories of inlet mass flow rate, inlet pressure, and exit 

pressure for a  “natural” (t < t0) and an “elliptically” constrained (t > t0+10) realization of a 

fully condensing shear driven flow in the horizontal test-section of Fig. 5.  
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Fig. 6b: For the flow realizations shown in Fig. 6a, this figure shows time histories of 

average wall heat flux q˝ and pressure difference ∆p (≡ pin - pexit). The 90 Pa change in ∆p is 

large compared to the typical pressure difference of 100 Pa – 200 Pa that exists over the 

annular/stratified portion of the flow (which is shown to have a total pressure difference of 

about 275 Pa).  

Fig. 6c: For constraining shown in Figs. 6a-6b, this figure shows thermal transient response 

(notice the green curve for temperature takes 65 minutes to become steady after time t0) 

and compares it shorter hydrodynamic response of the average heat flux q˝HFX-1 which 

becomes steady in only 10 minutes after time t0.  

Fig. 7: This figure shows the steady Tw(x)-1 values for t < t0 and new steady Tw(x)-2 for t > t0 

+ 65 minutes in Figs. 6a-6c.  

Fig. 8a: The liquid domain calculations underneath δshift(x,t) with prescribed values of u1s
i
  

and v1s
i
  on δshift(x,t) are implemented so as to satisfy the correct shear and pressure 

conditions on the actual liquid domain underneath δ(x,t).  

Fig. 8b: The vapor domain calculations above δ(x,t) with prescribed values of u2
i
  and v2

i
 on 

δ(x,t) satisfy the requirement of continuity of tangential velocities and equality of 

interfacial mass balance. 

Fig 9: The above δδδδ(x,t) predictions for t > 0 are for the steady solution (at t = 0
-
) and an 

initial disturbance δδδδ′(x,0
+
). The t > 0 solutions (shown for t = 5 and 15) are obtained on two 

grids I and II, ( ) tnnn V|jL|ji ∆×××
Ι

= ( ) 5.2203030 ××× and ( ) tnnn V|jL|ji ∆×××
ΙΙ

=

( ) 5305050 ××× .  
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Fig. 10a: The figure compares steady/quasi-steady solutions for a vertical channel obtained 

by 2-D and 1-D techniques. The solutions are obtained for R-113 vapor with inlet speed of 

U = 0.41 m/s, ∆T = 5 °C, h = 0.004 m, and gx = 9.8 m/s
2
. 

Fig. 10b: The figure compares steady/quasi-steady solutions for a channel under 0g 

conditions. The results are obtained by 2-D and 1-D techniques. The solutions are obtained 

for R-113 vapor with inlet speed of U = 0.6 m/s, ∆T = 5 °C, and h = 0.004 m. 

Fig. 11a: Figure shows film thickness versus x variation and the y-variations of the x-

component of the velocity profile (at x = 20) for gravity driven vertical (1g) and shear 

driven (0g) flows inside a tube. The figure also shows the linearity of temperature profiles 

(at x = 20) for both the cases. The solutions are obtained for flow of FC-72 vapor with inlet 

speed of U = 0.7 m/s, ∆∆∆∆T = 7.5ºC, and diameter = 6.6 mm. 

Fig. 11b: For the cases shown in Fig. 11a, this figure shows the non-dimensional interfacial 

pressure variations with downstream distance. 

Fig. 12: The figure suggests the boundaries in {x, Rein, Gp} space that mark various 

transitions from gravity dominated regime to shear dominated regime for a flow of FC-72 

vapor with Ja/Pr1 = 0.004, ρ2/ρ1 = 0.0148 and µ2/ µ1 = 0.0241. The nature of steady 

governing equations is parabolic over the entire parameter space while the nature of 

unsteady equations changes from “parabolic” to “parabolic with elliptic sensitivity” as one 

moves from gravity driven to shear driven flow conditions. 

Fig. 13: For condensing flow in zero gravity with inlet vapor speed of 0.6 m/s and vapor to 

wall temperature difference of 5ºC, this figure shows a time history of “specified” exit 

liquid flow mass rate for an on-off type time-periodic prescription such that the mean 
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liquid mass flow rate at the exit is slightly less than the “natural” one.  

Fig. 14: For the flow conditions and the exit liquid mass flow-rate elliptic imposition in Fig. 

13, this figure shows response of film thickness values with distance x and non-dimensional 

time t (t is a parameter). This figure shows that at all times t > 0, annular/stratified 

solutions exist for the on-off prescription as well as for the constant steady prescription at 

the “natural” exit condition.  

Fig. 15: The figure shows the Nux values for the natural steady and two different quasi-

steady impositions in Fig. 3 and Fig. 13. The Nux (and q″ = (k
1
∆∆∆∆T / h δδδδ(x)), W/m

2
) values 

show differences in the heat transfer rates. 

 

Fig. 16a: For condensing flow in zero gravity with inlet vapor speed of 0.6 m/s and vapor to 

wall temperature difference of 5ºC, this figure shows the stable response of the flow to an 

initial disturbance on the interface if the exit condition for the flow is free or controlled to 

be exactly at the “natural” value (M�� ��
�t� = M�� ��
|Na = 0.116).  

 

Fig. 16b: For flow conditions of Fig. 16a this figure shows the unstable response of flow to 

an initial disturbance on the interface if the exit of the flow is controlled at a constant  “off-

natural” value (M�� ��
�t� = M�� ��
|constant = 0.123).  

 

Fig. 17a: For the exit condition impositions shown in Fig. 3, this figure shows response of 

the non-dimensional pressure drop values between the inlet and the outlet of the condenser. 

 

Fig. 17b: For the exit conditions impositions shown in Fig. 13, this figure shows response of 
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non-dimensional pressure drop values between the inlet and the outlet of the condenser. 

 

Fig. 18a: For the flow conditions and exit liquid mass flow-rate control shown in Figs. 3, 

this figure shows the response of non-dimensional values of net mechanical energy in to the 

condenser versus non-dimensional time t. Because of the typically negative slopes 

associated with the constant steady “off-natural” prescription, one can also conclude that 

no long term quasi-steady solution exists in the annular/stratified regime.  

Fig. 18b: For the flow conditions and exit liquid mass flow-rate control shown in Fig. 13, 

this figure shows the response of non-dimensional values of net mechanical energy in to the 

condenser with non-dimensional time t. It is shown that for the on-off prescriptions at “off-

natural” mean, net mechanical energy in to the condenser steadies up at a mean slightly 

higher but near the “natural” value. 

Fig. 19: For 0g shear driven flows, this figure shows eventual mean values of net 

mechanical energy into the condenser for quasi-steady on-off type periodic prescriptions 

with the mean prescription values on either side of the “natural” exit condition.  

Fig. 20: For 0g flows, this figure shows the mean values of the total energy transfer rate (

ΣD� ) across the interface for on-off type periodic prescriptions with the mean prescription 

values on either side of the “natural” exit condition.  

Fig. 21: Schematic of the flow loop for the shear driven (fully or partially) condensing flow 

experiments. 
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Fig. 2b 
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0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

950 1000 1050 1100 1150 1200

Continuous 'Off-Natural' Control

On-Off Control for an 'Off-Natural' Mean

Continuous control at 'Natural' Exit Flow Condition

N
o

n
-d

im
e

n
si

o
n

a
l L

iq
u

id
E

x
it

 F
lo

w
 R

a
te

Non-dimensional Time

Controllability Through Exit Liquid MassFlow Rate

Mean of On-Off control 

L-eM̂ (t)
�

Tp 

Controllability through Certain Exit Liquid Mass Flow Rate L-eM (t)
∧
i

Specification 

Constant Steady Prescription at an “Off-Natural” Value 

Quasi-steady On-Off Prescription at an “Off-Natural” Mean 

Constant Steady Prescription at “Natural” Exit Condition 

Mean of Quasi-steady On-Off Prescription  

τc τr 



71 

 

 

 

 

 

 

 

 

 

Fig. 4 
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Fig. 6c 
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Fig. 7 
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Fig. 9 
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Fig. 10a 
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Fig. 11a 

 
Fig. 11b 
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Fig. 12 
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Fig. 13 
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Fig. 14 
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Fig. 15  
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Fig. 16a 
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Fig. 17a 
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Fig. 17b 
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Fig. 18a 
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Fig. 18b 
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Fig. 19 
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Fig. 20 
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Fig. 21 

 

 

 


