Appendix D: Basic Matrix Algebra

This appendix briefly reviews basic matrix algebra from a perspective of this book. The presentation presupposes you are familiar with the concepts. You may need to review your mathematics book for additional details.

D.1 Basic Definitions

A rectangular array of numbers is called a matrix. The matrix shown in Equation (D.1) has m rows and n columns. The size of the matrix is said to be (m x n). The element in the ith row and jth column is represented by \(a_{ij} \).

\[
[A] = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\] (D.1)

D.2 Addition of Matrices

Addition of matrices can only be performed for matrices having the same number of rows and columns. The sum of two matrices \([A]\) and \([B]\) of m rows and n columns results in a matrix \([C]\) of m rows and n columns and is represented by Equation (D.2a).

\[
[C] = [A] + [B]
\] (D.2a)

The elements of the matrix \([C]\) can be found using Equation (D.2b).

\[
c_{ij} = a_{ij} + b_{ij} \quad i = 1, 2 \cdot \cdot \cdot m \\
j = 1, 2 \cdot \cdot \cdot n
\] (D.2b)

D.3 Multiplication of Matrices

Multiplication of a matrix by a number results in a matrix where all elements are multiplied by the number as shown in Equation (D.3).

\[
q[A] = q\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} = \begin{bmatrix}
qa_{11} & qa_{12} & \cdots & qa_{1n} \\
qa_{21} & qa_{22} & \cdots & qa_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
qa_{m1} & qa_{m2} & \cdots & qa_{mn}
\end{bmatrix}
\] (D.3)
The order of multiplication is important when two matrices are multiplied. In Equation (D.4a), matrix \([A]\) is said to pre-multiply matrix \([B]\) and matrix \([B]\) is said to post-multiply matrix \([A]\).

\[
[C] = [A][B] \tag{D.4a}
\]

In Equation (D.4a) the number of columns of matrix \([A]\) must equal to number of rows of matrix \([B]\). If matrix \([A]\) of size \((m \times n)\) pre-multiplies matrix \([B]\) of size \((n \times p)\), the result is a matrix \([C]\) of size \((m \times p)\). The elements of matrix \([C]\) can be found from

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \quad i = 1, 2, \ldots, m \quad j = 1, 2, \ldots, p \tag{D.4b}
\]

D.4 Matrix and its Transpose

The transpose of a rectangular matrix \([A]\) consisting of \(m\) rows and \(n\) columns is written as \([A]^T\) and are related as shown in Equation (D.5).

\[
[A] = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} \quad [A]^T = \begin{bmatrix}
a_{11} & a_{21} & \cdots & a_{m1} \\
a_{12} & a_{22} & \cdots & a_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \cdots & a_{mn}
\end{bmatrix} \tag{D.5}
\]

The element \(a_{ij}\) of matrix \([A]\) becomes element \(a_{ji}\) in the transposed matrix \([A]^T\).

A *square* matrix (same number of rows and columns) is said to be symmetric if the transpose of the matrix is the same as the original matrix as shown in Equation (D.6)

\[
\text{Symmetric Matrix} \quad [A]^T = [A] \tag{D.6}
\]

Equation (D.7) lists the rules that apply to transpose of matrices during addition and multiplications.

\[
([A] + [B])^T = [A]^T + [B]^T \quad ([A][B])^T = [B]^T[A]^T \tag{D.7}
\]
D.5 Determinant of a Matrix

Determinant is defined only for a square matrix and is represented as shown in Equation (D.8).

\[
|A| = \det[A] = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
\] \hspace{1cm} (D.8)

The minor \(M_{ij} \) associated with a element \(a_{ij} \) is the determinant of the matrix in which the \(i^{th} \) row and \(j^{th} \) column have been removed. The determinant of a matrix can be found using Equation (D.9) where \(i \) is any row in the matrix or it can be found using Equation (D.10) where \(j \) is any column in the matrix.

\[
|A| = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} M_{ik} \hspace{1cm} (D.9)
\]

\[
|A| = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} M_{kj} \hspace{1cm} (D.10)
\]

If the determinant of a matrix is zero i.e., \(|A| = 0 \) then the matrix \([A]\) is said to be singular. In a singular matrix either all rows are not independent or all columns are not independent.

D.6 Cramer’s Rule

Cramer’s rule can be used for solving a set of linear algebraic equations. Consider the set of \(n \) linear algebraic equations in matrix form shown in Equation (D.11).

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_j \\
x_{n-1} \\
x_n
\end{bmatrix}
=
\begin{bmatrix}
r_1 \\
r_2 \\
\vdots \\
r_j \\
r_{n-1} \\
r_n
\end{bmatrix}
\] \hspace{1cm} (D.11)

By Cramer’s rule the \(j^{th} \) unknown \(x_j \) can be found by first replacing the \(j^{th} \) column by the right
hand side vector, taking the determinant of the resulting matrix, and then dividing by the determin-

ant of the matrix \([A]\) as shown in Equation (D.12)

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & r_1 & a_{1n} \\
 a_{21} & a_{22} & \cdots & r_2 & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{n1} & a_{n2} & \cdots & r_n & a_{nn}
\end{bmatrix}
\]

\[
A_j = \frac{\begin{vmatrix}
 a_{11} & a_{12} & \cdots & r_1 & a_{1n} \\
 a_{21} & a_{22} & \cdots & r_2 & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{n1} & a_{n2} & \cdots & r_n & a_{nn}
\end{vmatrix}}{\begin{vmatrix}
 a_{11} & a_{12} & \cdots & 1 & \cdots & 0 \\
 a_{21} & a_{22} & \cdots & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & 0 & \cdots & 0
\end{vmatrix}} = \frac{\begin{vmatrix}
 a_{11} & a_{12} & \cdots & r_1 & a_{1n} \\
 a_{21} & a_{22} & \cdots & r_2 & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{n1} & a_{n2} & \cdots & r_n & a_{nn}
\end{vmatrix}}{\begin{vmatrix}
 a_{11} & a_{12} & \cdots & 1 & \cdots & 0 \\
 a_{21} & a_{22} & \cdots & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & 0 & \cdots & 0
\end{vmatrix}}
\]

\[j = 1, 2, \ldots, n\]

D.7 Inverse of a Matrix

Inverse of a matrix can be found only of a square matrix. The inverse of a matrix \([A]\) is denoted by \([A]^{-1}\). The product of a matrix and its inverse results in an identity matrix \([I]\) as shown in Equation (D.13). The identity matrix \([I]\) has one for the diagonal elements and all off-diagonal elements are zero.

\[
[A]^{-1} [A] = [A][A]^{-1} = [I]
\]

Equation (D.11) in matrix form can be written as Equation (D.14a).

\[
[A] \{x\} = \{r\}
\]

where, \(\{x\}\) represents the unknown vector with components \(x_j\) and \(\{r\}\) represents the right hand side vector with components \(r_j\). By pre-multiplying by \([A]^{-1}\) to both sides of Equation (D.14a) and using Equation (D.13) we obtain the unknown vector as shown in Equation (D.14b)

\[
[A]^{-1} [A] \{x\} = [A]^{-1} \{r\} \quad \text{or} \quad [I] \{x\} = [A]^{-1} \{r\} \quad \text{or} \quad \{x\} = [A]^{-1} \{r\}
\]