Thermal Energy Storage

1. Sensible Heat
2. Latent Heat
3. Thermocatalytic Decomposition
4. Photocatalytic Decomposition
Solar Ponds

- Large surface area
- Stratification due to buoyancy
 - Warmer fluid at surface
 - Some energy returned to atmosphere via evaporation
 - Partial pressure of H2O usually higher at surface than in atmosphere, reduces evaporation losses

- Some natural salt-water lakes exhibit opposite behavior
 - IT is reversed
 - Lakes have non-uniform salt concentrations
 - Greater concentration at bottom even though it is warmer than surface
 - Solar energy absorbed at deeper layers remains there

- Solar ponds, salt ponds - designed to take advantage of this phenomenon
 - Combined solar collector/energy storage system medium

- El Paso, TX
 - 3350 m² water storage pond near a food canning plant converted to a solar pond in 1986
 - Largest built in Israel in Dead Sea region
 - 6250 m² pond at En Beqek → 150 MW plant → first
 - Now:
 - 40,000 m²
 - 210,000 m²
 - 5 MW Rankine peaking plant
Thermal Energy Storage

Collector - Tsdeliver = ΔT (transport from collector to storage) + ΔT (into storage) + ΔT (storage loss) — 'self-discharge' + ΔT (out of storage) + ΔT (transport from storage to application) + ΔT (into application)

\[Q_s = (m \cdot C_p) \cdot \Delta T_s \]

Water storage (tank)

- Top of tank hotter than bottom
- Can allow for better over all thermal storage if properly designed

Packed bed storage
- Pebble bed
- Rock pile
- Use heat capacity of bed material to store energy
- Usually air as thermal transfer fluid

Storage of Wells
Table 4.1: Physical properties of some sensible heat storage materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (g/L)</th>
<th>Heat Capacity (kJ/kg·K)</th>
<th>Thermal Conductivity (W/m·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (1 bar)</td>
<td>1000</td>
<td>1.09</td>
<td>0.63 at 38°C</td>
</tr>
<tr>
<td>Draw salt (Dow Chemical Co.)</td>
<td>1200</td>
<td>0.90</td>
<td>0.63 at 38°C</td>
</tr>
<tr>
<td>Molten salt (ISKINO)</td>
<td>1420</td>
<td>0.72</td>
<td>0.57 at 38°C</td>
</tr>
<tr>
<td>Sodium (Thermolin 60°C)</td>
<td>1680</td>
<td>0.75</td>
<td>0.57 at 38°C</td>
</tr>
<tr>
<td>Cast iron</td>
<td>720</td>
<td>0.86</td>
<td>0.59 at 38°C</td>
</tr>
<tr>
<td>Dowel (10 mm)</td>
<td>740</td>
<td>0.80</td>
<td>0.63 at 38°C</td>
</tr>
<tr>
<td>Aluminum (1150-1300)</td>
<td>880</td>
<td>0.71</td>
<td>0.63 at 38°C</td>
</tr>
<tr>
<td>Rock</td>
<td>1000</td>
<td>0.70</td>
<td>0.63 at 38°C</td>
</tr>
<tr>
<td>Storage Medium</td>
<td>1000</td>
<td>0.71</td>
<td>0.63 at 38°C</td>
</tr>
</tbody>
</table>

Note: m.p. = melting point.
Table 4.6. Representation from Clark [6].

<table>
<thead>
<tr>
<th>Particle Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td></td>
</tr>
<tr>
<td>Crushed rock</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td></td>
</tr>
</tbody>
</table>

where \(G \) is the superficial fluid flow rate and Prandtl numbers

where \(D \) is the diameter of the tube and thermal conductivity of the tube and the fluid

where \(A = 0.33 \) for mass flow rate

or the mass flow rate sure drop in packed b
high, which promotes thermal stratification; the costs of the storage material and container are low; the conductivity of the bed is low when there is no airflow; and the pressure drop through the bed can be low.

A major advantage of a packed-bed storage unit is its high degree of stratification. This can be visualized by consideration of a hypothetical situation of a bed initially at a fixed temperature, which has air blown into it at a higher fixed temperature. The temperature profiles in the bed during heating are shown in Figure 8.5.2. The high heat transfer coefficient-area product between the air and pebbles means that high-temperature

![Figure 8.5.1](image1)

Figure 8.5.1 A packed-bed storage unit.Courtesy of Solaron Corp.

![Figure 8.5.2](image2)

Figure 8.5.2 Temperature distributions in a pebble bed while charging with inlet air at constant temperature.
\[\frac{\dot{Q}}{m} = \dot{q}_s = c_p (T_s - T_i) + \lambda + c_l (T_l - T_i) \]

Solid-to-liquid phase change

\[\dot{q}_s = c_p (T_s - T_i) + \lambda + c_l (T_l - T_i) \]

- **Sensible heat to melting point**
- **Sensible heat from melting point**
- **Latent heat of fusion**

Glutaric Salt \(\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O} \) \[\rightarrow \text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O} + \text{Q} \] \[\leftrightarrow \text{Na}_2\text{SO}_4 + 10\text{H}_2\text{O} \]

\[c_s \approx 1950 \text{J/kgK} \]
\[c_l \approx 3550 \text{J/kgK} \]
\[\lambda \approx 2.43 \times 10^5 \text{J/kg} \] at 34°C

\[1 \text{ kg heated from 25°C to 50°C} \]

\[\dot{Q}_s = 1950 (30-25) + 2.43 \times 10^5 + 3550 (50-34) = 315 \text{ J/kg} \]

PCM's have a tendency to degrade with thermal cycling, partially due to phase separation.
Table 4.3. Physical properties of latent heat storage materials or PCMs

<table>
<thead>
<tr>
<th>Material</th>
<th>Composition (wt% by weight)</th>
<th>State</th>
<th>MLI</th>
<th>HML</th>
<th>LMI</th>
<th>LI</th>
<th>Solid (g/L)</th>
<th>Liquid (g/L)</th>
<th>Solid Density (kJ/kg)</th>
<th>Liquid Density (kJ/kg)</th>
<th>Energy Density (kJ/L)</th>
<th>Thermal Conductivity (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE (Oxidation)</td>
<td>HDPE (70/30)</td>
<td>Liquid</td>
<td>126</td>
<td>28.3</td>
<td>397</td>
<td>505</td>
<td>222</td>
<td>32.4</td>
<td>8.1</td>
<td>1.76</td>
<td>3.32</td>
<td>3.29</td>
</tr>
<tr>
<td></td>
<td>203</td>
<td></td>
<td>2.88</td>
<td>1.68</td>
<td>1.34</td>
<td>1.63</td>
<td>1.76</td>
<td>2.35</td>
<td>960</td>
<td>814</td>
<td>2300</td>
<td>2295</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td></td>
<td>2.51</td>
<td>1.63</td>
<td>1.34</td>
<td>1.63</td>
<td>1.76</td>
<td>3.62</td>
<td>2265</td>
<td>2140</td>
<td>1960</td>
<td>1950</td>
</tr>
<tr>
<td></td>
<td>347</td>
<td></td>
<td>2.33</td>
<td>1.63</td>
<td>1.34</td>
<td>1.63</td>
<td>1.76</td>
<td>4.50</td>
<td>1900</td>
<td>1780</td>
<td>1600</td>
<td>1590</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td></td>
<td>1.50</td>
<td>1.63</td>
<td>1.34</td>
<td>1.63</td>
<td>1.76</td>
<td>2.25</td>
<td>0.27</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Note: *Composition in percent by weight.

Thermal Energy Storage and Transport
Chemical energy storage

- Thermal decomposition of potassium oxide
 \[4 \text{K}_2\text{O} \leftrightarrow 2 \text{K}_2\text{O}_2 + 3\text{O}_2 \]
 - Heat of decomposition of 21 MJ/kg
 - 300 to 800°C

- Thermal decomposition of lead oxide
 \[2\text{PbO}_2 \leftrightarrow 2\text{PbO} + \text{O}_2 \]
 - 300–360°C
 - Heat of decomposition of 0.26 MJ/kg

- Photochemical decomposition

\[\text{NO}_2 + \text{photons} \rightarrow \text{NO} + \text{O} \]

\[\text{A} + \Delta H_\text{f} \leftrightarrow \text{B} + \text{C} \]

- Forward direction is endothermic (heat storage)
- Reverse direction is exothermic (heat release)

\[Q_s = \text{area} \times \Delta H_\text{f} \]
 - Amount of thermal energy stored

\[\text{fraction of mass reacted} \]

- Joseph Priestley, 1774: Mercury oxide
 - Released gas that resulted in brighter candle combustion
 - Mouse lived longer
 - Eventually led to identification of \(\text{O}_2 \)

- Decomposition of:
 - Metal hydrides
 - Oxides
 - Peroxides
 - Ammonium salts
 - Carbonates
 - Alkali trioxides

- Should also include sensible heat
Table 4.4. Properties of thermochemical storage media

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Condition of Reaction</th>
<th>Component (Phase)</th>
<th>Pressure, kPa</th>
<th>Temperature, °C</th>
<th>Density, kg/m³</th>
<th>Volumetric Storage Density, kWh/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgCO₃(s) + 1200 kJ/kg = MgO(s) + CO₂(g)</td>
<td>100</td>
<td>MgCO₃(s)</td>
<td>100</td>
<td>20</td>
<td>1500</td>
<td>187</td>
</tr>
<tr>
<td>Ca(OH)₂(s) + 1415 kJ/kg = CaO(s) + H₂O(g)</td>
<td>100</td>
<td>Ca(OH)₂(s)</td>
<td>100</td>
<td>20</td>
<td>1115</td>
<td>345</td>
</tr>
<tr>
<td>SO₃(g) + 1235 kJ/kg = SO₂(g) + NO₃(g)</td>
<td>100</td>
<td>SO₃(g)</td>
<td>100</td>
<td>45</td>
<td>1900</td>
<td>280</td>
</tr>
</tbody>
</table>

Note: s = solid; l = liquid; g = gas

Goswami, Kreith, and Kreider