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Article 7

Energy Economics

Energy economics is a specialized field used to make decisions on energy purchases,
selection of competing energy generation technologies, and financing of energy tech-
nologies. A thorough study of this subject is beyond the scope of this course, but every
engineer should have a basic understanding of energy economics in order to bridge the
gap between engineering decision analysis and economic decision analysis.

7.1 Energy Costs

Energy costs can generally be divided into two categories both of which are called by
many different names:

1. Capital
startup
investment
initial
⋮

2. Recurring
ongoing
operational
operations and maintenance (O&E)
income
⋮

Examples of capital costs include cash or borrowed money used for construction of
facilities, equipment purchase, and/or equipment installation. Capital costs are usually
one-time expenses incurred at the beginning of a project.

Examples of recurring costs are numerous; including salaries, taxes, annuity pay-
ments, maintenance costs, losses due to scheduled shutdowns for maintenance, loan
payments and fuel costs. These costs may be uniform payments in time (regular) or
sporadic (irregular).

The difference in the two categories has to do with time. Capital costs are always in
today’s value of money (present value) whereas recurring costs occur at some future time
when the value of money will have changed. This poses difficulties when comparing
competing energy systems. For example, an economic comparison of a conventional
gas-fired to a solar home hot water heater requires evaluation of money at different
times. The conventional hot water heater is very low capital costs, but with recurring
future fuel costs. A solar hot water heater has relatively high capital costs, but minimal
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Article 7 Energy Economics

recurring costs since fuel is not being consumed. Energy economic analysis methods
attempt to convert all monetary costs to a common basis so as to enable quantitative
comparisons of competing technologies.

7.2 Time Value of Money

The premise of time value of money is that a dollar received today is perceived to
be worth more than a dollar received in the future. There are several factors that drive
this perception. The first is time preference.

Time preference of humans is the reason that present consumption (money)
is preferred to future consumption. Time preference is naturally different
for each person in a society. It is difficult to measure for individuals and
even more difficult to aggregate for a society. [1]

A second factor affecting the time value of money is the “rental rate”, or interest rate,
on funds. There is a future cost associated with the present value of the rented funds.
Finally, a third factor is the possibility of currency inflation, which reduces the future
purchasing power of present funds.

Economic comparison of competing energy technologies requires a common time basis
for money. The common basis may be in terms of today’s dollar, the value at some
time in the future, or the value at some time in the past.

7.3 Discount Rate

The value of money has historically declined with time. The effect of a dollar pur-
chasing less today than 20 years ago is known as inflation. There are many factors
that can cause inflation, not the least of which is the perception that “a dollar in hand
today is more valuable than one to be received at some time in the future” [2]. In order
to compare energy system benefits and costs that occur at different points in time,
all monetary factors should be converted to a common time basis. This conversion is
known as discounting.

Discount Rate is the fractional decline in the value of money used for comparing
present and future costs on a common basis. The discount rate may also be thought of
as the rental rate on funds needed for the investment that could be undertaken. This
investment may be for an energy system, or a potential alternative investment used as
a comparison.

The value used for a discount rate is industry specific, but some common means for
determining a discount rate are:

• rate higher than a U.S. Treasury Bond
• anticipated rate of inflation
• rate of interest that balances costs and benefits (savings and/or revenues)
• rate of financing available
• rate of return on alternative investment with similar risk
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7.4 Economic Analysis Methodologies

The choice of discount rate depends on the specific scenario being analyzed. Low
discount rates tend to be favorable towards projects with long-deferred benefits. High
discount rates tend to be favorable towards projects with quick paybacks. The discount
rate should reflect the ‘opportunity cost’ of the capital to be invested.

7.4 Economic Analysis Methodologies

There are many, varied approaches to energy economic decision analysis. All of these
variations include some type of analysis that includes both capital and recurring costs.
The scope of the analysis can vary significantly and the most appropriate choice of
analysis method depends on the desired basis for comparison. These various analysis
methods can be generally divided into subsets of three general approaches:1

1. determine largest possible savings for a fixed budget,
2. determine the minimum budget required, or
3. determine return-on-investment.

An example of the first is retrofitting an existing facility to be more energy efficient,
and the person/department charged with retrofitting has a fixed budget. An example of
the second scenario could be implementation of a government or corporate regulation
to cut electrical usage by X% with minimum expenditures. The third scenario looks for
the optimum energy technology that results in the lowest energy usage/cost or largest
profit. For all three methods, the most economically efficient choice may not be the
most energy efficient choice.

The type of analysis chosen has much to do with type of energy project being con-
sidered. For instance, a short-lived project may not be affected by the future value of
money, but a project which is expected to take decades to complete, such as a power
plant, will certainly be affected by future costs. The cost effectiveness of the short-lived
project might be accomplished using a simple payback method. The long-lived project
may be better assessed through some form of a life cycle analysis (LCA).

Simple Payback Method determines the time period to recover capital costs. Typi-
cal considerations are accumulation of savings, no future value of money, no interest on
debt, and no comparison to fuel costs. The Simple Payback Method penalizes projects
with long life potentials in part because any savings beyond payback period are ignored.
There is no accounting for inflation or for escalation of future savings in fuel costs that
historically have increased at a faster rate than inflation.

Life Cycle Analysis, also known as Engineering Economic Analysis, considers the
total cost over anticipated useful life, where useful life is the lesser of lifetime or ob-
solescence. Analysis may some or all of the following: capital costs, operating costs,
maintenance costs and contracts, interest on investment, fuel cost, salaries, insurance,
salvage value, lost future value of money not invested, and taxes or tax incentive.

Life Cycle Analysis (LCA) might include indirect costs paid by society but not reflected
as cash flow. An example would be health and environmental costs associated with
pollution due to electric power generation from coal; a cost not directly paid by the

1see Krieth and Goswami [3, Chapter 3. Economic Methods] for more detailed explanation
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power generating utility. The difficulty with life cycle analysis is that many of the costs
are in the future and can only be estimated with some unknown uncertainty. New
technologies may also result in unanticipated obsolescence that, in hindsight, will turn
a ‘cost effective’ decision into an investment loss.

All of the economic evaluation analysis methods are attempting to do two things. The
first is to manipulate costs and savings to a common basis in time. The second is to
assess these costs against a comparative objective; i.e., (i) which energy system has the
lowest total expense, (ii) which system maximized return on investment, or (iii) which
system will maximize savings in energy costs. Some common LCA methodologies2 are:

• Life-Cycle Cost Method (LCC): all future costs are brought to present values for a
comparison to a base case. The base case may be a conventional energy system,
design variations in alternative energy systems, or the alternative of not making
the investment. LCC is commonly used to determine the ‘cost-minimizing’ option
that will achieve a common objective.

• Levelized Cost of Energy (LCOE): seeks to convert all costs (capital and recurring)
to a value per energy unit that must be collected (or saved) to ensure expenses
are met and reasonable profits collected. Future revenues are discounted at a rate
that equals the rate of return that might be gained on an investment of similar
risk; often called the ‘opportunity cost of capital’. LCOE is often used to compare
competing energy producing technologies.

• Net Present Value (NPV): (also known as Net Benefits, Net Present Worth, Net
Savings Methods) determines the difference between benefits and expenses with
everything discounted to present value. NPV is used for determining long-term
profitability.

• Benefit-to-Cost Ratio (BCR): (also known as Savings-to-Investment Ratio) is sim-
ilar to NPV, but utilizes a ratio instead of a difference. Benefits usually implies
savings in energy cost. What to include in the numerator (benefits) and de-
nominator (costs) varies and care should be taken when assessing a reported
benefit-to-cost ratio. This method is often used when setting priorities amongst
competing projects with a limited budget. Projects with the largest ratio get the
highest priority.

• Overall Rate-of-Return (ORR): determines the discount rate for which savings in
energy costs are equal to total expenditures. This is equivalent to determining
the discount rate that results in a zero NPV. This method enables cash flow
to be expressed in terms of the future value at the end of the analysis period.
Previous methods require specification of a discount rate; this method solves for
the discount rate.

• Discounted Payback Method (DPM): determines the time period required to
offset the initial investment (capital cost) by energy savings or benefits. Unlike

2These economic evaluation analyses are based on Krieth and Goswami [3, Chapter3. Economic
Methods]. There are numerous variations on these names and purposes in the Energy Economics
field.
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the simple payback method, the time value of money is considered. DPM is often
used when the useful life of the project or technology is not known.

The number of analysis methods and the associated jargon (CRF, ACC, LCOE,
MARR, DCFROI, PPM, IRR, TER, FVF, PWF, NPV, BCR, SIR . . . ) can be over-
whelming. As stated previously, all of the economic evaluation analysis methods are
attempting two objectives:

1. manipulate costs and savings to a common time basis, and
2. assess these costs against some comparative objective.

Fortunately, the various forms of analysis and vocabulary are generally constructed
around two simple arithmetic concepts: (i) compounding and (ii) uniform series.
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Discounting Tools

8.1 Discounting Tool - Future Value

A basic measure of the time value of money is the future value obtainable through
compounding. Compounding is a fractional growth rate based on finite time intervals;
similar to exponential growth, which is fractional growth at infinitesimal time intervals.

8.1.1 Compounding Formula

Compounding can be described mathematically in terms of a growth rate, a time
period over which compounding occurs, and the number of compounding periods being
considered.

P: quantity which increases by a fractional rate at fixed time intervals
τ : time interval; hr, day, month, year, quarter, . . .
j : growth rate, fractional increase in value per time interval [%/τ ]
n: number of time intervals

The compounding formula can be derived by examining the increase in P after each
time interval. At the end of the first time interval, the initial value, P0, has increased
by the fractional amount (jτ)P0. Similarly, at the end of the second time interval, the
starting value, P1 has increased by a fractional amount.1

at the end of period 1: P1 = P0 + (jτ)P0 = P0 (1 + jτ)

end of period 2: P2 = P1 + (jτ)P1 = P1 (1 + jτ) = P0 (1 + jτ)2

period 3: P3 = P2 + (jτ)P2 = P2 (1 + jτ) = P1 (1 + jτ)2
= P0 (1 + jτ)3

⋮

period n: Pn = P0 (1 + jτ)n

Compound Interest Formula: Pn = P0 (1 + jτ)n

1The growth rate, j, and time interval, τ , are usually combined into a single fraction, i = jτ with
an implied time interval of one year. We will maintain the distinction between growth rate and
time interval since the time interval of concern may not always be the same during an analysis of
competing energy conversion technologies or a comparison of forms of energy, i.e., solar energy
versus chemical energy. The symbols F and P are commonly used for Pn and P0, respectively.
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Typically, the compound interest formula is expressed as an annual growth and the
time interval is implicit; Pn = P0 (1 + j)m

, where i is the percent growth per year and
m is the number of years.

8.1.1.1 Relation Between Compounding and Exponential Growth

As alluded to previously, compounding is essentially the same as exponential growth
but with finite time intervals for fractional growth.

P1 −P0 = (jτ)P0

τ ≡ ∆t

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

∆P
∆t

= jP0 Ð→ lim
∆t→0

dP
dt

= jP Ð→ P = P0ejt

8.1.1.2 Multiple Compound Rates

When dealing with energy, the escalation rate due to inflation is often insufficient
to describe future increase in costs. Historically, fuel prices have increased at a rate
higher than inflation. Therefore, if recurring costs include fuel then two rates should
be considered. In the simplest terms, the two factors are multiplied. If i is the rate
of inflation and j is the escalation rate of fuel cost, then from the compound interest
formula,

Pn

P0
= (1 + iτ)n

(1 + jτ)n
= [(1 + iτ) (1 + jτ)]n

The growth factor (right side of equation) may be substituted with by a Total Escalation
Rate growth factor, Pn = P0(1 +TER)n, where

TER = (1 + inflation rate) (1 + escalation rate) − 1 .

8.1.2 Effective Interest Rate (Short-Term Interest Rate)

Many financial institutions calculate interest payments on an annual basis even though
the time interval for compounding is less than a year. The annual percentage rate (APR)
is not necessarily the annual growth rate because of the multiple compounding periods
which occur per annum. For example, an APR of 18% compounded monthly is in
actuality 1.5% interest on a balance applied monthly with an effective annual interest
rate of 19.56%. The effective annual interest rate can be determined by equating
compounding formulas for which the beginning and ending balances should be the same;
i.e., Pn must be the same regardless of how growth rate and compounding period are
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calculated.

j ≡ monthly interest rate = ( 18%
year

) (
1 year

12 months
) = 1.5% per month

τ ≡ compounding period = month

n ≡ number of time intervals = 12

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

j = (APR) (
1 year

nτ )

j ′ ≡ effective annual interest rate (not APR)

τ ′ ≡ compounding period = year

n′ ≡ number of time intervals = 1

The effective annual interest rate can be derived by equating the monthly and yearly
growths and rearranging to solve for j ′:

Pn

P0
= (1 + jτ)n

= (1 + j ′τ ′)n′

n ln (1 + jτ) = n′ ln (1 + j ′τ ′)

(1 + jτ)n/n′
= (1 + j ′τ ′)

Effective Interest Rate: j ′ =
1
τ ′

[(1 + jτ)n/n′
− 1]

Thus, for 18% APR compounded monthly,

j ′ =
1

1 yr
[(1 +

0.015
mo

⋅mo)
12/1
− 1] = 19.56% per year.

An alternative formulation for the effective annual interest rate is:

j ′ =
1
τ ′

⎡
⎢
⎢
⎢
⎢
⎣

(1 +
APR

nτ
)

n/n′
− 1

⎤
⎥
⎥
⎥
⎥
⎦

8.1.2.1 Example 4-1. APR, Compounded Quarterly

Determine the effective annual interest rate on a loan with 6% APR compounded
quarterly.

compounding time interval, τ ≡ quarter (3 months)

growth rate per τ , j = (
0.06 APR

year
)(

1 year

4 quarters
) = 0.015 per quarter

number of time intervals per year, n = 4

Pn

P0
= (1 + jτ)n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
per quarter

= (1 + j ′τ ′)n′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
per year
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j ′ =
1
τ ′

[(1 + jτ)n/n′
− 1] =

1
year

[(1 +
0.015
quarter

⋅ quarter)
4/1
− 1] =

0.0614
year

The effective annual interest rate is 6.14%.

8.1.2.2 Example 4-2. APR, Compounded Daily

Determine the effective annual interest rate on a loan with 17.23% APR compounded
daily.

compounding time interval, τ ≡ day

number of time intervals per year, n = 365

growth rate per τ , j = (
0.1723 APR

year
)(

1 year

365 days
) = 0.000472 per day

Pn

P0
= (1 + jτ)n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
per quarter

= (1 + j ′τ ′)n′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
per year

j ′ =
1
τ ′

[(1 + jτ)n/n′
− 1] =

1
year

[(1 +
0.000472

day
⋅ day)

365/1
− 1] =

0.188
year

The effective annual interest rate is 18.8%.
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8.1 Discounting Tool - Future Value

8.1.3 Uniform Series Formula (Equal Payment Annuity Formula)

The uniform series formula expresses the growth of a quantity due to a fractional
increase plus a regular annuity or payment. This may be used to determine the amount
of money that should be collected per time interval in order to recoup capital costs.

The symbols used are the same as for the compound interest formula with the addition
of the fixed payment, S, per time interval.

P: quantity which increases by a fractional rate at fixed time intervals
S: payment or annuity per time interval τ ; S will be added after each τ
τ : time interval; hr, day, month, year, quarter, . . .
j : growth rate, fractional increase in value per time interval [%/τ ]
n: number of time intervals

The uniform series formula can be derived in a similar manner as the compound
interest formula; by examining the increase in P after each time interval. At the end
of the first time interval, an initial value of zero will increase by S. At the end of the
second time interval, the value, P1, will increased by a fractional amount plus another
S.2

n

0 P0 = 0

1 P1 = S note that the first payment occurred after the first period

2 P2 = P1 + (jτ)P1 +S = P1(1 + jτ) +S = S(1 + jτ) +S

3 P3 = P2 + (jτ)P2 +S = P2(1 + jτ) +S = S(1 + jτ)2 +S(1 + jτ) +S
⋮

n Pn = Pn−1 + (jτ)Pn−1 +S = S {(1 + jτ)n−1 + (1 + jτ)n−2 +⋯ + (1 + jτ) + 1}

To simplify this series, multiply Pn by (1 + jτ) and then subtract Pn:

Pn(1 + jτ) = S {(1 + jτ)n + (1 + jτ)n−1 + (1 + jτ)n−2 +⋯ + (1 + jτ) }

− Pn = S { − (1 + jτ)n−1 − (1 + jτ)n−2 −⋯ − (1 + jτ) − 1}

Pn(jτ) = S {(1 + jτ)n − 1}

Uniform Series Formula: Pn = S {

(1 + jτ)n
− 1

jτ
}

2The symbol A is often used to represent the equal payment annuity instead of S.
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8.1.3.1 Starting Point for First Payment

The derivation of the Uniform Series Formula was based on the first payment begin-
ning at the end of the first time interval. For payments that start at the beginning of
the first time interval, there is an extra compounding period,

Pn = S
⎧⎪⎪
⎨
⎪⎪⎩

(1 + jτ)n+1
− 1

jτ

⎫⎪⎪
⎬
⎪⎪⎭

8.1.3.2 Gains & Losses

Gains (compounding interest) and losses (inflation) can both be accounted for when
determining the required uniform series payments. If d is the fractional decrease per
time interval, then:

gain: (jτ1)Pn = S {(1 + jτ1)
n
− 1}

loss: (dτ2)Pm = S {(1 + dτ2)
m
− 1}

Losses can be considered as a negative gain. If the compounding periods are the same,
then n = m and τ1 = τ2 = τ and the gains and losses may be added together.

(jτ)Pn − (dτ)Pn = S {(1 + jτ)n
− (1 + dτ)n

}

Gains & Losses: Pn = S {
(1 + jτ)n

− (1 + dτ)n

(j − d) τ
}

14
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8.1.4 Examples using Future Value

8.1.4.1 Example 4-3. Effective Heating Costs – Alternative Investment

A solar-powered home heating system can be built for $8000 and will supply all of the
heating requirements for 20 years. Assume that the salvage value of the solar heating
system just compensates for the maintenance and operational costs over the 20 year
period. If the interest on money is 8%, compounded annually, what is the effective cost
of heating the house? Another way to ask this question is “How much would you have
to save per year to equal the future value of $8,000 invested for 20 years at 8%?”3

The discount rate is based on the lost future value of the $8000 at 8% compounded
annually. Therefore, the total capital cost is based on the build cost plus the lost future
value of an alternative investment.

P20 = P0 (1 + jτ)n
= $8000 [1 + (

0.08
yr

) (yr)]
20

= $37, 287.66

The capital cost is considered to be $37,287.66 and not just the immediate cost of
$8,000.

The current annual heating costs which just offsets the capital cost are found using
the uniform series formula where S is the yearly heating cost saved with the new solar
heating system.

P20 = S {
(1 + jτ)n

− 1
jτ

} = S

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1 + ( 0.08
yr

) (yr))
20
− 1

( 0.08
yr

) (yr)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

= S {
1.0820 − 1

0.08
}

S =
P20

45.76
= $814.82 per year

The annual savings in heating costs required to offset the capital cost, including lost
potential earnings, is $815 per year. This analysis does not account for inflation or any
escalation in fuel prices.

3This is an example of a Levelized Cost Of Energy (LCOE) analysis.
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8.1.4.2 Example 4-4. Effective Heating Costs – Minimum Payments

A proposed solar-heating system for a home costs $6,000 and has a rated operational
life of 20 years. Purchase and installation of the system is to be financed by a 60-month
loan with an annual percentage rate of 7.2%. The salvage value of the solar-heating
system will essentially be zero. Determine the maximum effective yearly heating costs
for the system to pay for itself if the annual savings could be invested at 6% interest
compounded annually.4

In order to determine the required annual savings in heating costs, the capital cost
must be determined. The initial loan is $6000 with a 7.2% APR for 60 months. The
monthly interest rate on the loan is:

j = (
0.072
year

)(
1 year

12 months
) =

0.006
month

Therefore, the capital cost associated with the borrowed money is:

P60 = $6000 [1 +
0.006
month

⋅month]
60

= $8, 590.73

This value, however, is not the complete capital cost because the funds could have been
invested at 6% per annum. Thus, the total capital cost includes the lost future value
of the initial loan plus interest.

P20 = P0 (1 + jτ)n
= $8, 590.73 [1 +

0.06
year

⋅ year]
20

= $27, 551.63

Note the change in time interval to reflect the 20 year lifetime and 20 years of lost
future revenue. The total capital cost of the solar-heating system is estimated to be
$27,551.63.

The annual savings in heating costs required to break even with the total capital cost
is:

P20 = $27, 551.63 = S {
(1 + jτ)n

− 1
jτ

} = S {
(1.06)20 − 1

0.06
}

The annual heating costs must be S ≥ $749 per year.

If the opportunity cost of the capital is not considered, then the annual heating costs
would have to be less than

P20 = $8, 590.72 = S {
(1.06)20 − 1

0.06
}

Now the annual heat cost must be S ≥ $233.56, which is likely too low to justify
purchase of the solar-heating system. Both scenarios assume 0% inflation and no
escalation of fuel costs.

4This is an example of a Levelized Cost Of Energy (LCOE) analysis.
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8.1.4.3 Example 4-5. Effective Heating Costs – With & Without Inflation

What should be the annual savings in heating costs in order to “break even” after
twenty years on an $8000 solar-powered residential heating system? Consider two cases,
one without inflation and one with inflation.5

Case 1 (future value without inflation)
• long-term investment at 8% per year, compounded annually
• no operational or maintenance costs,
• no inflation
• no fuel cost escalation
• no salvage value or tax incentives
• savings reinvested at 6% APR, compounded monthly

First, the capital cost, which is based on the as-built cost plus lost future value on
the money, must be determined.

P20 = $8000 (1 + 0.08)20
= $37, 287.66

The savings in heating costs required to “break even”after 20 years is based on investing
the savings at 6% APR, compounded monthly.

monthly basis:

Pn = S {
(1+jτ)n−1

jτ }

τ ≡ month

n = 12 × 20 = 240

j = ( 0.06
year

) (
1 yr

12 mo
) = 0.005/τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

P240 = $37, 287.66 = S {
(1+0.005)240−1

0.005 }

S = $80.70 per month

yearly basis:

Pn′ = S {
(1+j ′τ ′)n′−1

j ′τ ′ }

τ ′ ≡ year

n′ = 20

j ′ = 1
τ ′

[(1 + j ′τ ′)n/n′ − 1]

= 1
yr

[(1 + 0.005
mo
⋅mo)

240/20
− 1]

= 0.0617 per year

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

P20 = $37, 287.66 = S {
(1+0.0617)20−1

0.0617 }

S = $995.27 per year

5This is an example of a Levelized Cost Of Energy (LCOE) analysis.
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Article 8 Discounting Tools

The annual savings in heating costs should be at least $995. This does not account
for inflation. Notice that the required monthly savings multiplied by 12 does not equal
the required annual savings.

Case 2 (future value with inflation)
• long-term investment at 8% per year, compounded annually
• no operational or maintenance costs
• inflation rate of 4% per year
• no salvage value
• no fuel cost escalation
• no tax incentives
• savings reinvested at 6% APR, compounded monthly

From Case 1, the capital costs are estimated at $37,287.66 and the effective annual
interest rate available for reinvestment of savings is 6.17%, compounded annually. The
savings in heating costs required to “break even” after 20 years is:

Pn = S {
(1+jτ)n−(1+dτ)n

(j−d)τ }

τ ≡ year

n = 20

j = 0.0617/τ

d = 0.04/τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

P20 = $37, 287.66 = S { 1.061720−1.0420

0.0617−0.04 }

S1 = $722.15 (savings in first year)

The calculated required annual savings of $722.15 is only valid for the first year. After
that inflation will increase the cost of home heating by 4% per year. The required
savings in heating costs for future years is:

Sn = S0(1 + dτ)n

but what is S0? We can rewrite this in terms of S1 by recognizing that S0 = S1(1 +
dτ)−1. Subsequently,

Sn = S1(1 + dτ)n−1

The required savings in heating costs for future years are:

10th year: S10 = S1(1.04)9 = $1, 027.84

20th year: S20 = S1(1.04)19 = $1, 521.46
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8.2 Discounting Factors

8.2 Discounting Factors

Many energy economic analysis books or articles will begin with six basic discounting
factors that can be tabulated for various discount rates. Discounting factors are almost
always tabulated on an annual basis. In the previous articles, we have used two basic
growth rate expressions instead of annualized discount factors:

compounding: Pn = P0(1 + jτ)n (8.1)

and

uniform series: Pn = S {
(1 + jτ)n

− 1
jτ

} (8.2)

The six basic discounting factors are simply algebraic manipulations of these two equa-
tions. While there is no common language or nomenclature, a commonly used nomen-
clature is F for future value (Pn), P for present value (P0), and A for uniform series
payment (S); the annual growth rate is i% over m years.

Annual Discounting Factors Solution

Future Value FV)
Future Worth Factor (FW)

Future Sum (FS)
Single Compound Amount (SCA)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

given P, find F
(F/P, i%, m)

equation (8.1), solve for Pn

Present Value (FV)
Present Worth Factor (FW)

Single-Payment Present Worth
Single Present Worth (SCW)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

given F, find P
(P/F, i%, m)

equation (8.1), solve for P0

Equal-Payment Series Compound)
Uniform Compound Amount (UCA)

Uniform-Series Compound Factor

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

given A, find F
(F/A, i%, m)

equation (8.2), solve for Pn

Sinking-Fund Payment
Uniform Sinking Fund (USF)

Sinking Fund Factor

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

given F, find A
(A/F, i%, m)

equation (8.2), solve for S

Capital Recovery
Equal-Payment Capital Recovery
Uniform Capital Recovery (UCR)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

given A, find P
(P/A, i%, m)

substitute eq. (8.1) into
eq. (8.2), solve for P0

Uniform-Series Present Worth
Uniform Present Worth (UPW)

Series Present Worth

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

given P, find A
(A/P, i%, m)

substitute eq. (8.1) into
eq. (8.2), solve for S
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8.3 Discounting Tool - Present Value

The present value methods are used to bring all future costs, which may occur in
different years, back to today’s value of money. In this way, the cost effectiveness of
different energy technologies can be compared on an equal basis.

8.3.1 Compounding – Present Value

Compounding in terms of present value is the inverse of future value.

P0 = Pn
1

(1 + jτ)n = Pn (1 + jτ)−n

In other words, use equation (8.1) and solve for P0.

8.3.2 Uniform Series – Present Value

In terms of future value, a uniform series annuity was derived as [eq. (8.2)]:

Pn = S {
(1 + jτ)n

− 1
jτ

}

The present value can be determined by substituting equation (8.1) into the uniform
series formula:

P0 = S {
(1 + jτ)n

− 1
(jτ)(1 + jτ)n }

Another way to look at this is that there are two equations (8.1 & 8.2) and two unknowns
(P0 and Pn).
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8.3.3 Examples using Present Value

8.3.3.1 Example 4-6. Home Mortgage Payments & Present Value

A good example of the need to calculate present value is with a home mortgage. A
lump sum is borrowed at a fixed annual interest rate and uniform series payments are
made on the mortgage while interest is accruing. Consider a 30-year fixed-rate mortgage
for $250,000 at 6% per year.

The present value is P0 = $250, 000. If no payments were made, the future value
would be P30 = P0(1.06)30 = $1, 435, 873. With uniform annual payments of S, we
could recalculate the future value. However, what we would like to determine is the
value of S which pays off the mortgage while interest is accruing at 6% per year. The
problem is that we have one equation and two unknowns P30 and S:

P30 = S {
(1 + jτ)n − 1

jτ
}

The future value, P30, is related to the present value, P0: P30 = P0 (1 + jτ)30
.

Substituting this into the uniform series formula,

P0 = P30(1 + jτ)−30
= S {

(1 + jτ)30 − 1
(jτ)(1 + jτ)30 } = S {

1.0630 − 1
0.06 ⋅ 1.0630 } = S (13.76)

Thus, the annual uniform series payment required to pay off in 30 years a present value
of $250,000 which grows at 6% per year is $18,162.

The monthly payment required would have to be determined using the monthly
growth rate, where j ′n′τ ′ = jnτ .

j ′ = j (
nτ

n′τ ′
) = 0.06/yr(

1 yr

12 mo
) = 0.005/mo

The uniform series in terms of present value on a monthly basis is:

P0 = P360(1 + jτ)−360
= S {

1.005360 − 1
0.005 ⋅ 1.005360 } = S (166.79)

The monthly uniform series payment required to pay off in 30 years a present value of
$250,000 which grows at 6% per year is approximately $1,500.
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8.3.3.2 Example 4-7. Least Current Cash Option

You are in charge of purchasing several new fleet vehicles. You are offered two pay-
ment options. Option A requires a $30,000 payment at the end of the year for four
years. Option B requires a $39,000 payment at the end of the year for the next three
years. Which is the least costly option if the long-term interest is 8%, compounded
annually. In other words, what is the minimum amount of cash that should be set aside
now to make the annual payments?6

The two options require uniform payments, but over different periods of time. In
order to compare the two options, calculate how much money today (present value)
would be required to make the payments if the lump sum was invested at 8%, com-
pounded annually.

Option A:
The cash outlay in present value is 4 × $30, 000 = $120, 000. This calculation,

however, does not account for the future value of this money, which is:

P4 = S {
(1 + jτ)4 − 1

jτ
} = $30, 000{

1.084 − 1
0.08

} = $135, 183

The present value of the future value ($135,183) is:

P0 = P4(1 + jτ)−4
= $135, 183(1.08)−4

= $99, 364

If the $99,364 were invested now at 8%/year, then each year a $30,000 payment could
be made with a balance of $0 at the end of year 4.

Option B:
The cash outlay in present value is 3 × $39, 000 = $117, 000, which appears to be

the less expensive option. However, when considering the future value and converting
that into the present:

P3 = $39, 000{
(1.08)3 − 1

0.08
} = $126, 610

The present value of P3 is:

P0 = P3(1 + jτ)3
= $126, 610(1.08)−3

= $100, 507

Option B (3 years) is less based on total actual dollar payments. However, when
accounting for the future value of money, less cash would have to be set aside in order
to make the payments with Option A. Thus, Option A (4 years) is more cost effective.

6This is an example of a Net Present Value (NPV) analysis.
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8.3 Discounting Tool - Present Value

8.3.3.3 Example 4-8. Alternative Energy Payback - Present Value

A small municipality is considering installing a 1 MWe wind turbine that will cost $6.5
million to install, and then generate a net annuity of $400,000 per year for twenty-five
years, with an estimated salvage value of $1 million.7 The inflation rate is estimated to
be 5% per year.
(a) Use a simple payback method to assess the economic viability.
(b) Calculate the present value to assess the economic viability.

Part (a) Using a simple payback method, the net value of the project is the income
plus salvage value less the capital cost.

$400, 000/year × 25 years (annual income)

+ $1, 000, 000 (salvage)

− $6, 500, 000 (capital)

$4, 500, 000 (net value of project)

The income from annuities and salvage exceed the initial cost by 69%. The presumes,
however, that the value of money is the same twenty-five years from now.

Part (b) If the value of money changes in time, then the income gathered over time
needs to be discounted. In this case, the easiest method would be to convert the income
into present value since the project cost is already at present value.

Future Value of Income (subscript i)

Pi25 = Si {
(1 + jτ)n − 1

jτ
} = Si {

1.0525 − 1
0.05

}

Present Value of Income

Pi0 = Pi25 (1 + jτ)−n
= Pi25 (1.05)−25

= $5.64 million

Inflation has substantially reduced the present value of income.

Present Value of Salvage (subscript s)

Ps0 = Ps25 (1 + jτ)−n
= $295, 303

$1 million 25 years from now is only worth $295,000 today.

Present Value of Capital (subscript c)

Pc0 = $6.5 million

Present Value of Project

P0 = Pi0 +Ps0 −Pc0 = −$565, 000

Based on the present value analysis, the project is not economically viable at 5% in-
flation. Economic viability will require a lower inflation rate, higher income, or tax
incentives or subsidies.

7example adapted from Vanek and Albright [4, example 3-3]
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8.4 Discounting Tool - Levelized Value

Levelized value is a technique used to convert a series of non-uniform payments into
a uniform series payment per time per energy unit. In this way, the cost of a project
relative to the energy produced can be examined through an equal payment or dividend
per some time period; usually a year. This method is useful when comparing two dif-
ferent energy technologies; especially when comparing a fossil fuel technology with a
renewable energy technology.

fossil fuel renewable energy

relatively low capital high capital cost

significant recurring costs in fuel;
may escalate at different rate than inflation low recurring costs

8.4.1 Levelization of Values

The levelization process is straightforward. First convert each value (future, present,
series) into a present value and sum to find the total present value. Then convert
the total equivalent present value into an equivalent uniform series of values over the
anticipated life of the project; usually this is on an annual basis, but the time interval
can be anything you choose. Finally, divide the equivalent cost for that time interval
by the energy produced/consumed during that time interval. These steps will use only
the two basic equations derived, compounding and uniform series, but will require some
manipulation of the equations.

Compounding: Pn = P0 (1 + jτ)n

Uniform Series: Pn = S {
(1 + jτ)n

− 1
jτ

}
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8.4.2 Examples using Levelized Values

8.4.2.1 Example 4-9. Levelizing a Non-Uniform Series

A series of payments will be made annually for ten years. The initial payment is
$20,000 and each year the payment increases by $5,000. The interest rate is 10%, com-
pounded annually. Determine the equivalent uniform series value from the non-uniform
series value.8

First, convert each payment into a present value based on a 10% escalation.

Pn = P0 (1 + jτ)n
Ð→ P0 = Pn (1 + jτ)−n

j = 0.10
τ ≡ year
n = 10

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

P01 = $20 ⋅ 103(1.1)−1 = 18.2 ⋅ 103

P02 = $25 ⋅ 103(1.1)−2 = 20.7 ⋅ 103

P03 = $30 ⋅ 103(1.1)−3 = 22.5 ⋅ 103

⋮

P010 = $65 ⋅ 103(1.1)−10 = 25.1 ⋅ 103

ΣP0 = P0T
= ⋯ = $237 ⋅ 103

Next, convert this total present value into a uniform series of annual payments.

PnT
= S {

(1 + jτ)n − 1
jτ

}

and

PnT
= P0T

(1 + jτ)n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒ S = P0T
{
(jτ)(1 + jτ)n

(1 + jτ)n − 1
}

S = $237 ⋅ 103
{
(0.1)(1.1)10

(1.1)10 − 1
} = $38.6 ⋅ 103 per year

Thus, the equivalent uniform series value is $38,600 per year.

8example from Black & Veatch [5, p12]
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8.4.2.2 Example 4-10. Levelizing Cost of Electricity

An electric power plant that produces 2 billion kWhe per year has a capital cost of
$500 million and anticipated lifetime of 20 years. The salvage value is estimated to cover
the cost of dismantling the plant. The capital cost of the plant is repaid at 7% interest,
compounded annually. The total annual operational cost of the plant is $25 million, and
the annual return to investors is estimated at 10% of the operating cost plus the capi-
tal repayment cost. Determine the levelized cost of electricity for this plant, in $/kWhe.9

The levelization will be done on an annual time increment. First, annualize the capital
cost by taking the initial loan plus the interest and converting it into a uniform series
of annual costs. Then add the other annualized cost; operational costs and annual
dividends to investors. The levelized cost is the total annualized (uniform series) cost
divided by the annual energy output.

Total Capital Cost (subscript c)

Pc20 = Pc0 (1 + jτ)n
= Pc0 (1.07)20

= $1, 935 ⋅ 106

Uniform Series Equivalent of Total Capital Cost

Pc20 = Sc {
(1 + jτ)n

− 1
jτ

} = Sc (40.996)

Sc = $47.2 ⋅ 106

Annual Operating Cost (subsript o)

So = $25 ⋅ 106

Annual Return to Investors (subsript r)

Sr = 0.10 (Sc +So) = $7.2 ⋅ 106

Total Annualized Cost

S = ($47.2 + $25 + $7.2) ⋅ 106
= $79.4 ⋅ 106 per year

Levelized Cost =
$79.4 ⋅ 106/yr

2000 ⋅ 106 kWhe/yr
= $0.0397/kWhe

In 2007, the average electrical energy price for all customers (residential, commer-
cial, industrial and transportation) was $0.089/kWhe.10 This price includes taxes and
transmission costs. Based on the levelized cost of $0.0397/kWhe, this plant appears to
be competitive in many U.S. markets.

9example adapted from Vanek and Albright [4, example 3-5]
10based on data from Energy Information Agency [6, p261]
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