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Abstract 
 
A continuum-based elastic micromechanics model is developed for silica nanoparticle/polyimide 
composites with various nanoparticle/polyimide interfacial treatments.  The model incorporates 
the molecular structures of the nanoparticle, polyimide, and interfacial regions, which are 
determined using a molecular modeling method that involves coarse-grained and reverse-
mapping techniques.  The micromechanics model includes an effective interface between the 
polyimide and nanoparticle with properties and dimensions that are determined using the results 
of molecular dynamics simulations.  It is shown that the model can be used to predict the elastic 
properties of silica nanoparticle/polyimide composites for a large range of nanoparticle radii, 10 
Å to 10,000 Å.  For silica nanoparticle radii above 1,000 Å, the predicted properties are equal to 
those predicted using the standard Mori-Tanaka micromechanical approach, which does not 
incorporate the molecular structure.  It is also shown that the specific silica 
nanoparticle/polyimide interface conditions have a significant effect on the composite 
mechanical properties for nanoparticle radii below 1,000 Å. 
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1.  INTRODUCTION 
 
In the design and development of Unmanned Aerial Vehicles (UAVs) at the National 
Aeronautics and Space Administration, the primary requirements are long-duration, high-altitude 
flights.  These requirements necessitate the use of lightweight, durable materials for most of the 
structural components of these UAVs.  Polyimide-based composites are excellent candidates for 
this purpose due to their resistance to degradation under various environmental conditions.  
Furthermore, the use of nanostructured reinforcement in polymers has the potential to provide 
increases in the mechanical properties relative to larger-scale reinforcements that are currently 
used for aerospace applications, such as carbon fibers [1-3].  To facilitate the development of 
nanostructured polyimide composite materials for this purpose, constitutive relationships must be 
developed that predict the bulk mechanical properties of the materials as a function of the 
molecular structure of the polyimide and reinforcement.  These constitutive relationships can be 
used to influence the design of these materials before they are synthesized. 
 
In the past few years, a considerable amount of research has been conducted to examine the 
modeling of mechanical properties of polymer composites with nanoscale reinforcement.  The 
majority of this work has focused on carbon nanotube-reinforced polymers [4-9].  Even though it 
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has been shown that these materials have the potential to have excellent mechanical properties, 
the relatively high costs of development and manufacturing of nanotube/polymer composites has 
been prohibitive.  A lower cost approach is the use of clays and particles in the polymer.  Several 
efforts have focused on the modeling of mechanical properties of nanoclay-reinforced polymer 
composites [10] and nanoparticle-reinforced polymer composites [11, 12].  These modeling 
efforts have demonstrated the need for the development of a model that will predict the 
mechanical properties of nanoparticle/polyimide composites as a function of the nanoparticle 
size and volume fraction, and the molecular structure of the nanoparticle/polyimide interface. 
 
In the present paper, a continuum-based constitutive model was developed for silica 
nanoparticle/polyimide composites with four different nanoparticle/polyimide interfacial 
treatments.  The model incorporates the molecular structure of the nanoparticle, polyimide, and 
interfacial region.  The model was used to examine the elastic properties of the composite as a 
function of nanoparticle radius, ranging from 6 Å to 1 µm, and particle/matrix interfacial 
treatments, including untreated nanoparticles, nanoparticles with attached hydroxyl and 
phenoxybenzene groups, and nanoparticles attached to the polyimide via covalent bonding. 
 
2.  MATERIALS 
 
The constitutive models developed in this study are for four variations of silica (SiO2) 
nanoparticle-reinforced polyimide composites.  The silica had an α-quartz crystal structure, and 
the nanoparticles were nearly spherical in shape, with an approximate radius of 6 Å.  The 
polymer modeled was based on a polyimide from 3,3’,4,4’-biphenyltetracarboxylic dianhydride 
(BPDA) and 1,3-bis(4-aminophenoxy)benzene (APB) monomers (Fig. 1) [13, 14].  The polymer 
was modeled as having an amorphous molecular structure.  The first variation of the composite 
had a silica nanoparticle without surface treatment that was not bonded to the surrounding 
polyimide.  The second variation had the nanoparticle surface comprised of hydroxyl groups that 
were bonded to silicon atoms.  In this variation, there were no covalent bonds between the 
polyimide molecules and the nanoparticle.  The third variation had phenoxybenzene groups (-
C6H4-O-C6H5) chemically bonded to the surface of the nanoparticle, and the phenoxybenzene 
groups were not directly bonded to the polyimide matrix.  The fourth variation had a 
hydroxylated surface (as in the second variation) with the nanoparticle covalently bonded 
(functionalized) to the surrounding polyimide molecules.  In addition to the four composite 
systems, the pure silica and the pure polyimide materials were examined. 
 
3.  MOLECULAR STRUCTURE 
 
The first step in establishing structure-property relationships of nanostructured materials is the 
determination of the molecular structure of the nanoparticle, polyimide matrix, and 
nanoparticle/polyimide interfacial area.  The equilibrium molecular structures of representative 
volume elements (RVEs) of the six material systems were determined using molecular modeling 
techniques.  Atomistic molecular modeling techniques have been in use for several decades to 
calculate mechanical properties of polymers [15].  Although modern computational limitations 
restrict the number of atoms in a typical simulated system, and hence the molecular weight of the 
polymer chains which can be simulated, mechanical properties consistent with experimental 
results can usually be obtained.  The primary challenge in polymer molecular modeling is the 
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generation of suitably equilibrated atomistic polymer molecular structures.  To this end, multi-
scale modeling techniques are often used to establish the molecular structures.  For this study, 
the molecular structures were prepared with the aid of a reverse-mapping procedure from a 
coarse-grained model [16].  The methods are similar to those previously employed for multi-
scale polymer modeling [17, 18].  A brief summary of the method is given here. 
 
For each polyimide molecule, a linked vector model was used to represent the rigid rings that 
comprise the polyimide backbone (Fig. 2).  The linked vectors followed the contour of the 
molecule.  The parameters used for this model consisted of angular distributions between 
consecutive vectors and long-range forces between beads placed along the midpoint of each 
vector.  These parameters were estimated from molecular dynamics (MD) simulation of the 
polyimide monomers with the CVFF force field [19].   The centroids of the beads placed at the 
midpoint of each vector were the centers for interaction forces between non-adjacent beads along 
the chain of the polymer and between beads on different chains.  Additional details on this 
procedure are presented elsewhere [20]. 
 
Once the coarse-grained model for the single polyimide molecule was established, it was 
subsequently used to assemble the coarse-grained bulk model with multiple polymer molecules 
and the nanoparticle.  The coarse-grained polymers were initially placed as random walk chains 
inside a simulation box (with periodic boundary conditions) close to their bulk density.  In this 
initial placement, only the angular distributions between adjacent vectors along the chain were 
considered.  Monte Carlo simulation was used to equilibrate the chains from their initial starting 
configuration.  The nanoparticle was modeled as an effective hard sphere.  As the Monte Carlo 
simulation proceeded, the long-range energy interactions established the excluded volume 
characteristics of the bulk polymer model.  The repulsive interaction of the hard sphere with the 
polymer excluded the polymer chains from this region.  The bulk polymer model consisted of 
seven chains of polymers each composed of ten of the repeat units shown in Fig. 1.  This chain 
length is typical for MD simulations of polymers.  The simulation box was a cube of side length 
42 Å with a hard sphere having a diameter of 15 Å.   The periodic box dimensions were chosen 
to allow the polymer to be close to the equilibrium bulk density.  The simulation ran at 650 K 
until relaxation of the autocorrelation function of the end vectors was achieved and the average 
centers of mass were displaced a distance greater than the average radii of gyration squared.  
After sufficient equilibration with the coarse-grained Monte Carlo model, the chains were 
reverse-mapped by replacing the deleted atoms back into position along the vectors of the 
coarse-grained model.  The nanoparticle was placed in the cavity that resulted from the effective 
hard sphere in the coarse-grained simulation.  The resulting atomistic structures were 
subsequently minimized by the following procedure.  A short energy minimization was applied 
to the structures.  This was followed by constant-pressure MD simulation for 200 ps at 300 K 
and 1 atm.  This constant-pressure MD simulation allowed the atomistic structures to relax to the 
equilibrium density.  The employed algorithm preserved the cubic structure of the simulation box 
while allowing the box size to change.  The final periodic boundary box size varied from 37.6 Å 
to 39.9 Å on a side depending on the nanoparticle involved.  These equilibrated structures were 
then subjected to a final energy minimization with the criteria of convergence of 0.01 kcal/(mol 
Å).  The functionalized structure was constructed by inserting an oxygen atom covalently bonded 
to a silicon atom in the nanoparticle and a nearby carbon atom in the polyimide.  A total of ten 
chemical bonds were inserted between the silica particle and the polymer matrix.  The structure 
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was then subjected to a molecular mechanics-based energy minimization [21] using the CVFF 
force field [19].  The pure polyimide matrix was generated using the same procedure as with the 
composite materials without the hard sphere particle in the coarse-grained simulation.  After the 
constant pressure MD simulation, the density of the pure polyimide matrix was 1.33 g/cm3.  This 
density is a reasonable value for polyimides [22]. 
 
The resulting RVEs of the molecular structures for the four composite systems are shown in 
Figs. 3 to 6.  The left-hand sides of Figs. 3 to 6 show the silica nanoparticle, and the right-hand 
sides show the particle in the polyimide matrix.  The various surface treatments are shown on the 
nanoparticle in each figure.  In Fig. 6 an example of the chemical bonding between the 
nanoparticle and the matrix is shown.  For each of the four composite molecular models, the 
radial density profiles of the nanoparticle and polymer (including the polyimide and interfacial 
molecules) were also determined and plotted in Fig. 7 as a function of the radial distance from 
the center of the nanoparticle.  In Fig. 7, the full magnitudes of the nanoparticle densities are not 
shown since only the nanoparticle density drop-off and the polymer densities are necessary in the 
micromechanical model development in this paper.  The density of the core structure of the 
nanoparticle for all four materials remained at the value of the quartz structure from which it was 
derived (2.65 g/cm3).   
 
4.  ELASTIC CONSTANTS 
 
The mechanical behavior of the molecular systems was described using continuum mechanics.  
Since the molecular system has a discrete (not continuous) structure, the model is an equivalent-
continuum model [23] in which the overall mechanical response of a RVE to an applied set of 
boundary conditions is equivalent to the response of the molecular system RVE subjected to the 
same set of boundary conditions.  The equivalent-continuum constitutive equation for the 
materials considered herein is developed below.   
 
It was assumed that the equivalent-continuum had a linear-elastic constitutive behavior.  The 
generalized constitutive equation of the equivalent continuum is 
 
 ij ijkl klCσ = ε  (1) 
 
where σij are the components of the stress tensor (i,j = 1,2,3), Cijkl are the components of the 
linear-elastic stiffness tensor, εij are the components of the strain tensor, and the summation 
convention associated with repeated subscripted indices is used.  It was further assumed that the 
composite, pure polymer, and pure silica RVEs had isotropic material symmetry.  The composite 
was assumed to be isotropic because of the presence of spherical reinforcement.  Therefore, after 
expansion, Eqn. (1) can be expressed as 
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where γij=2εij, and Ckl are the elastic stiffness tensor components written in the usual contracted 
notation (k,l = 1,..,6).  While the shear modulus of the materials, G, is simply ( )11 121 2 C C− , the 
Young’s modulus, E, is determined by inverting the stiffness tensor components, Ckl, to 
determine the components of the compliance tensor, Skl, followed by an inversion of S11. 
 
The elastic constants in Eqn. (2) were determined using the approach outlined by Theodorou and 
Suter [15], using the Materials Studio 2.2 [19] software package.  With this approach, a set of 
small, static (i.e. no thermal motion) deformations of the RVE was performed from an 
equilibrated, non-deformed state.  The deformed atomic coordinates were determined through an 
additional energy minimization step after the deformation was applied.  The energy difference 
between the deformed and undeformed states was used to calculate one elastic constant for each 
deformation applied.  Further details on this method can be found elsewhere [15].   
 
5.  MICROMECHANICS MODELS 
 
With the elastic constants of the equivalent-continuum models in hand, two continuum-based 
micromechanics techniques were used to predict the bulk elastic properties of composites 
comprised of the polyimide and silica nanoparticles for various effective particle sizes and 
effective interfaces.  Both models are described below. 
 
5.1.  Mori-Tanaka model 
 
The Mori-Tanaka approach [24, 25] was used to predict the elastic properties of two-phase 
composites (matrix and effective particle phases) as a function of the effective particle volume 
fraction and geometry (Fig. 8).  For this method, the overall elastic-stiffness tensor of the 
composite containing the isotropic constituents is 
 
 ( )( ) 1m m p p p m p pc c c c

−
= + +C C C T I T  (3) 

 
where the boldface terms indicate tensor quantities, cp and cm are the effective particle and matrix 
volume fractions, respectively, Cp and Cm are the stiffness tensors of the effective particle and 
matrix, respectively, I is the identity tensor, and Tp is the dilute strain-concentration tensor of the 
effective particles, and is given by 
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where Sp is the Eshelby tensor [26].  For spherical effective particle and an isotropic matrix, the 
components of the Eshelby tensor are [27] 
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where ν is the Poisson’s ratio of the matrix.  For a composite with spherical particles, it is 
evident from Eqns. (3) - (5) that the composite stiffness tensor is isotropic.  For composites with 
fibrous reinforcement, which are not considered in this study, Eqn. (5) has a different form and 
the composite stiffness tensor is generally anisotropic. 
 
In the Mori-Tanaka method, it is assumed that only the two phases exist (matrix and 
reinforcement), and they are perfectly bonded to each other.  Through a multitude of 
publications, the Mori-Tanaka approach has been used to accurately predict overall properties of 
composites when the reinforcements are on the micrometer-scale level, or higher.  At these 
higher length scales, the assumption of the existence of two phases is apparently acceptable.  
However, for nanometer-sized reinforcement, it has been shown that the molecular structure of 
the polymer matrix is significantly perturbed at the reinforcement/polymer interface, and this 
perturbed region is on a length scale that is the same at that of the nanometer-sized reinforcement 
[9].  Therefore, at the nanometer level, the reinforcement and adjacent polymer region is not 
accurately described as consisting of just two phases, thus the Mori-Tanaka model is not 
expected to perform well for nanostructured reinforcements. 
 
5.2.  Effective interface model 
 
Because of the aforementioned drawbacks to the Mori-Tanaka approach, another modeling 
approach was developed.  The effective interface model was used to predict the elastic properties 
of a composite with effective particles that have an interface of the same spherical shape as the 
effective particle (Fig. 8).  The effective interface has a finite size and models the region 
immediately surrounding the spherical reinforcement, which is commonly referred to as an 
interphase or an interaction zone.  The micromechanical model used for this was developed for 
composites with two-phase particles [28].  For this model, the bulk elastic stiffness tensor is 
 

 ( ) ( ) ( ) ( ) 1m p i i m pi p p i p m p i pic c c c c c
−

⎡ ⎤ ⎡= + + − + − + +⎣ ⎦ ⎣C C C C T C C T I T ⎤⎦  (6) 
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where ci and Ci are the volume fraction and stiffness tensor for the interface, respectively, and Tp 
and Tpi are the dilute strain-concentration tensors given by 
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In Eqn. (7), the Eshelby tensor, Sp, is given by Eqn. (5).  As with the Mori-Tanaka model, it is 
evident with the effective interface model the composite stiffness tensor in Eqn. (6) is isotropic 
for spherical particle reinforcement. 
 
Similar to the Mori-Tanaka model, the effective interface model assumes that the phases are 
perfectly bonded to each other.  However, the region that physically exists between the surface 
of the particle and the polymer matrix that has the bulk polymer molecular structure can be 
considered as an effective interface.  The presence of the effective interface allows the region 
that consists of the perturbed polyimide and interfacial molecules (e.g. Phenoxybenzene) to be 
modeled as a phase unto itself.  Unlike the Mori-Tanaka model, the effective interface model 
should be applicable to both nanometer-sized and larger-sized reinforcement. 
 
At this point, it is appropriate to discuss some of the assumptions in the effective-interface 
model.  In Figs. 3 to 7 it is clear that the molecular structure of the interfacial region is neither 
continuous nor homogeneous.  The use of the effective interface model assumes that the 
equivalent-continuum interfacial region is both continuous and homogeneous.  The assumptions 
of continuity and homogeneity must be made to achieve the objectives of this study.  The 
assumption of material continuity is required in order to develop structure-property relationships 
within a continuum mechanics-based framework.  The assumption of homogeneity within the 
effective interface is employed here to develop an accurate and efficient equivalent-continuum 
model for nanostructured composites.  As a consequence, the effective interface must be 
modeled as having a finite size with a discrete transition, even though the actual molecular 
structure consists of a gradual transition to the bulk molecular structure. 
 
6.  RESULTS AND DISCUSSION 
 
The calculated Young’s and shear moduli of the six material systems are shown in Tables 1 and 
2, respectively, determined using the molecular modeling procedure discussed in Sections 3 and 
4.  It is clear that the presence of the nanoparticle adversely affected the Young’s moduli of all 
four composite systems and the shear moduli of the three non-functionalized composites 
systems.  Therefore, in these instances, there was no elastic reinforcement of the matrix.  For the 
functionalized composite, the shear modulus was equal to that of the pure polyimide.  
Furthermore, for the functionalized composite system, the Young’s and shear moduli were 
higher than those of the other three composite systems, indicating that direct functionalization of 
the silica nanoparticle resulted in improved elastic properties over those obtained with non-
functionalized silica nanoparticles.  It is noted here that it is assumed that all of the predicted 
properties correspond to room temperature mechanical properties. 
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A micromechanics analysis was used to predict the elastic properties of the four composite 
systems using the Mori-Tanaka approach with the elastic properties of the pure polyimide matrix 
and silica materials determined with the molecular modeling.  The effective nanoparticle volume 
fraction was chosen to be that of the molecular model RVEs (Figs. 3-6), which was determined 
to be 1.7%.  The resulting predicted Young’s and shear moduli are shown in Tables 1 and 2, 
respectively.  Because the Mori-Tanaka approach does not consider the molecular structure of 
the particle/matrix interface, the properties for each of the four composite systems are the same.  
In contrast to the properties predicted with the molecular modeling, the properties predicted with 
the Mori-Tanaka approach have Young’s and shear moduli that are equal to or larger than those 
of the polyimide matrix, as expected.  Clear discrepancies exist between the values of Young’s 
and shear moduli predicted by the molecular modeling and Mori-Tanaka approach, as is shown 
in Tables 1 and 2 with the listed percentage differences.  The difference between the two 
approaches is much smaller for the functionalized silica nanoparticle/polyimide composite. 
 
The data presented in Fig. 7 may explain the discrepancies between the predicted elastic 
properties of the Mori-Tanaka and molecular modeling approaches.  For the non-functionalized 
composites, that is; the silica nanoparticle/polyimide, hydroxylated silica nanoparticle/polyimide, 
and phenoxybenzene silica nanoparticle/polyimide systems; a 33-40% increase in the polymer 
density exists at a radial distance of about 8-10 Å, as measured by the peak density value relative 
to the density at 18 Å.  For the functionalized system, only a 6% increase in density is observed.  
For radial distances between 10 and 15 Å, the initial rise in polymer densities is followed by a 
decrease in density.  For the non-functionalized composites in this radial distance range, the 
polymer densities associated with the non-functionalized composites are below that of the bulk 
polymer density (1.33 g/cm3), before they rise to the bulk density level after a radial distance of 
at least 15 Å.  For the functionalized polymer, the initial rise in density is followed by a gradual 
decrease in the density that approaches (but does not consistently drop below) the bulk density 
level.  This decrease in polymer density is most likely a result of the initial increase of the 
density close to the particle and conservation of mass.  The decrease of polymer density below 
the bulk density level (with an expected decrease in stiffness with a decrease in polymer density) 
and the nature of the molecular interactions between the particle and polymer molecules could be 
the causes for the substantial decrease in the predicted properties of the polymer when the non-
functionalized particles are added.  This behavior at the interface agrees with other results found 
in the literature [12].  These local changes in molecular structure are not incorporated into the 
Mori-Tanaka model, where it is assumed that the matrix material has a uniform density up to the 
surface of the effective particle, to which the matrix is perfectly bonded.  Therefore, it is 
expected that the Mori-Tanaka approach would predict an increase in the elastic properties of the 
polyimides upon reinforcement, whereas the molecular model predicts a decrease in the elastic 
properties.  Furthermore, the closer agreement between the Mori-Tanaka and molecular models 
for the functionalized system is expected because of the more uniform density profile of the 
functionalized system, which is evident in Fig. 7.  Because the density of the functionalized 
system does not consistently drop below the bulk density, a mechanical reinforcement of the 
polymer matrix is observed.   
 
From the results presented thus far, continuum-based micromechanics do not accurately predict 
elastic properties of the silica nanoparticle/polyimide composite system when it is assumed that 
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only two uniform phases exist, as is the case with the Mori-Tanaka approach.  To improve the 
micromechanics formulations for nanoparticle-reinforced composite systems, the change in the 
molecular structure near the particle/polymer interface must be incorporated into the 
micromechanics model.  At the same time, the micromechanics model needs to be able to 
accurately predict elastic properties for the composite as the effective particle radius is increased 
from the nanometer level up to the micrometer level.   
 
In the proposed model, it is assumed that an effective interface existed between the surface of the 
effective particle and the bulk matrix material.  This effective interface included the region that 
contained the denser polymer region and any interfacial molecules, and the schematic in Fig. 9 
shows how this effective interface region was defined.  For clarity, the graph depicted in Fig. 9 is 
the same data as in Fig. 7, without the data labels.  The effective interface extended from the 
surface of the effective nanoparticle, at a radial distance of 6 Å, to a radial distance of 18 Å, 
which corresponded to the edge of the simulation volume in the molecular modeling.  The 
effective interface was spherical and centered at the center of the effective particle, and had a 
thickness of 12 Å.  In Fig. 7 it appears that there is a non-zero polymer density for radii below 6 
Å for the phenoxybenzene silica/polyimide composite, thus there are small amounts of polymer 
in the region that is modeled as an effective particle in the effective interface model.  The 
polymer density in this region is relatively small, and results from the non-perfect spherical 
shape of the nanoparticle in the molecular model.  The radius of the effective particle was chosen 
to approximate the average radii of the nanoparticles in all of the molecular models.  It is 
expected that for MD simulations of phenoxybenzene silica/polyimide composite with larger 
simulation box sizes, the densities of the polymer would approach those of the bulk polyimide 
for large radial distances. 
 
The elastic properties of the effective interface were determined using Eqns. (6) and (7) and the 
elastic properties of the composites, silica, and pure polyimide determined using the molecular 
modeling.  The volume fractions of the effective particle, effective interface, and matrix were 
determined based on the volumes shown in Fig. 9, and were 1.7%, 45.2%, and 53.1%, 
respectively.  The only unknown parameter in Eqns. (6) and (7) is the elastic stiffness tensor of 
the effective interface, Ci.  It was assumed that Ci was isotropic, thus two independent elastic 
constants were required to define Ci.  Even though the molecular structure of the effective 
interface region (Fig. 7) does not necessarily posses isotropic symmetry, this assumption was 
made to maintain a reasonable level of simplicity in the modeling.  It was also assumed that the 
Poisson’s ratio of the effective interface was approximately equal to that of the polyimide, 0.4.  
The resulting elastic properties of the effective interface are given in Table 3.  For all four 
composites, the effective interface elastic properties were lower than those of the polyimide 
material (Tables 1 and 2), which is self-consistent with the results discussed above.  The elastic 
properties of the effective interface for the functionalized composite were higher than those of 
the three non-functionalized composites, indicating that the presence of covalent bonds between 
the silica and polyimide allowed for an improved load transfer over those of the non-
functionalized systems.   The elastic properties of the phenoxybenzene silica composite were 
particularly low, most likely because of the nature of the interactions of the phenoxybenzene 
groups with the surrounding polyimide. 
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The Young’s and shear moduli of the four composite systems were determined as a function of 
effective particle size (Figs. 10 and 11, respectively) using the effective interface model; the 
elastic properties of the silica, polyimide, and effective interface materials; an effective particle 
volume fraction of 5%; and a constant effective interface thickness of 12 Å.  From both Figs. 10 
and 11, it is clear that as the effective particle radius is increased up to 1,000 Å, the Young’s and 
shear moduli increase.  Therefore, as the effective particle size increases, and thus the ratio of the 
volume of the interface to the volume of the effective particle decreases, the effect of the 
interface on the composite elastic properties diminishes.  For further increases in effective 
particle size beyond 1,000 Å, the elastic properties do not increase significantly. 
 
Also included on Figs. 10 and 11 are the predicted elastic properties determined using the Mori-
Tanaka method with the elastic properties of the silica and polyimide materials for an effective 
particle volume fraction of 5%.  Since the Mori-Tanaka method does not assume the existence of 
an effective interface, the predicted properties were independent of effective particle size and the 
particle/polyimide interfacial molecular structure.  Comparing all of the curves determined from 
the two modeling approaches, it is clear that the moduli predicted from the effective interface 
model approach those predicted from the Mori-Tanaka model as the effective particle size 
increases.  At effective particle radii of about 1,000 Å and larger, the predicted Young’s moduli 
and shear moduli of the two models agree.  Furthermore, at effective particle radii greater than 
1,000 Å, ci→0 and it can be seen that Eqns. (6) and (7) reduce to Eqns. (3) and (4), respectively.  
Therefore, the two models are nearly the same for relatively large effective particle radii. 
 
 
7.  SUMMARY AND CONCLUSIONS 
 
A continuum-based elastic micromechanics model was developed for silica 
nanoparticle/polyimide composites with various nanoparticle/polyimide interfacial treatments.  
The model incorporated the molecular structures of the nanoparticle, polyimide, and interfacial 
regions, which were determined using a molecular modeling method that involved coarse-
grained and reverse-mapping techniques.  The micromechanics model included an effective 
interface between the polyimide and effective nanoparticle with properties and dimensions that 
were determined using the results of MD simulations. 
 
The predicted elastic properties from the effective interface model were compared to those 
predicted from the Mori-Tanaka method, which does not incorporate the molecular structure of 
the nanoparticle, polyimide, and interfacial region.  The results of the models were determined 
for four versions of the composite with different nanoparticle/polyimide interface treatments for 
effective particle radii ranging from 10 Å to 10,000 Å.  It was shown that the composite Young’s 
moduli and shear moduli determined with the effective interface model increased with increasing 
effective particle size, and asymptotically approached the moduli predicted from the Mori-
Tanaka method, which were independent of effective particle size.  This increase in mechanical 
properties relates to the diminishing effect of the effective interface as its relative volume, with 
respect to the volume of the particle, decreases when the nanoparticle size becomes larger.  The 
predicted moduli of the two models converged at an effective nanoparticle radius around 1,000 
Å.  Therefore, for the silica nanoparticle/polyimide composites studied, while the effective 
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interface model can be used for any effective nanoparticle size, the Mori-Tanaka method will 
only predict accurate elastic properties for effective particles greater than 1,000 Å. 
 
In addition to the observations on the limits to the micromechanics model, other conclusions can 
be drawn regarding the material performance.  For all four composite systems studied, the elastic 
properties were lower than those of the polyimide matrix alone when the effective nanoparticle 
radii were on the order of 10 Å.  Based on the predicted density profiles, this loss of properties 
with the addition of nanoparticles is because of the decrease in the polymer density below the 
bulk polymer density level and the nature of the nanoparticle/polymer molecular interactions.  
The loss in the elastic stiffness of the composite was significantly reduced by the introduction of 
chemical functionalization between the silica nanoparticle and the surrounding polyimide 
molecules.  Clearly, for the material considered in this study, the chemical functionalization 
strengthened the bonding between matrix and reinforcement.  As the effective particle size 
increased, and the size of the zone of perturbed polymer remained the same, the influence of the 
perturbed polymer densities diminished, and became insignificant at an effective particle 
diameter around 1,000 Å.  Therefore, for the specific materials investigated in this study, 
nanometer-sized reinforcement does not offer advantages over larger-scale reinforcement in 
terms of elastic properties of the composite.  Due to the sensitivity of the macro-scale elastic 
properties to changes in molecular structure of the material, the benefits of nano-scale 
reinforcement must be considered on a case-by-case basis for each combination of 
nanostructured reinforcement and matrix materials. 
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Table 1.  Young’s moduli of the material systems (GPa) 

 Silica Polyimide Silica 
composite

Hydroxylated 
Silica 

composite 

Phenoxybenzene 
Silica composite 

Functionalized 
Silica 

composite 
Molecular 

model 88.7 4.2 3.4 3.3 2.2 4.0 

Mori-
Tanaka  - - 4.3 4.3 4.3 4.3 

% 
Difference - - 26.5% 30.3% 95.5% 7.5% 

 
 

Table 2.  Shear moduli of the material systems (GPa) 

 Silica Polyimide Silica 
composite

Hydroxylated 
Silica 

composite 

Phenoxybenzene 
Silica composite 

Functionalized 
Silica 

composite 
Molecular 

model 41.0 1.5 1.2 1.2 0.8 1.5 

Mori-
Tanaka  - - 1.5 1.5 1.5 1.5 

% 
Difference - - 25.0% 25.0% 87.5% 0.0% 

 

Table 3.  Effective interface elastic properties (GPa) 

 Silica composite Hydroxylated 
Silica composite 

Phenoxybenzene 
Silica composite 

Functionalized 
Silica composite 

Young’s modulus  2.4 2.2 0.3 3.5 

Shear modulus  0.9 0.8 0.1 1.3 
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Figure 1.  Schematic illustration of BPDA (1,3,4) APB polyimide monomer unit 
 
 
 
 
 

 
Figure 2.  Depiction of the mapping of the atomistic polymer model to the coarse-grained linked 

vector model 
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Figure 3.  Molecular model of silica nanoparticle/polyimide composite 
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Figure 4. Molecular model of hydroxylated silica nanoparticle/polyimide composite 
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Figure 5. Molecular model of phenoxybenzene silica nanoparticle/polyimide composite 
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Figure 6.  Molecular model of functionalized silica nanoparticle/polyimide composite.  An 
example of the bonding to the matrix is illustrated at the top of the nanoparticle. 
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Figure 7.  Radial density profiles of nanoparticle and polyimide.  For the phenoxybenzene 
silica/polyimide composite, the density includes the polyimide and phenoxybenzene 
molecules. 
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Figure 8.  Schematic illustration of Mori-Tanaka and Effective Interface micromechanics 
approaches 
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Figure 9.  Schematic of the process used to determine effective interface (See Figure 7 for graph 

legend) 
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Figure 10.  Young’s modulus of the four composite systems versus effective particle radius 
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Figure 11.  Shear modulus of the four composite systems versus effective particle radius 
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